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Abstract

Software engineering is prototypical of knowledge work in the digital economy and exhibits strong
geographic concentration, with Silicon Valley as the epitome of a tech cluster. We investigate productivity
effects of knowledge worker agglomeration. To overcome existing measurement challenges, we track
individual contributions in software engineering projects between 2015 and 2021 on GitHub, the by far
largest online code repository platform. Our findings demonstrate individual productivity increases by
2.8 percent with a ten percent increase in cluster size, the share of the software engineering commu-
nity in a technology field located in the same city. Instrumental variable and dynamic estimation results
suggest these productivity effects are causal. Productivity gains from cluster size growth are strongest
for clusters hosting between 0.67 and 13.5% of a community. We observe a disproportionate activity
increase in high-quality, large, and leisure projects and for co-located teams. Overall, software engineers
benefit from productivity spillovers due to physical proximity to a large number of peers in their field.
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1 Introduction

Urban density is associated with higher wages and productivity. One of the main reasons for this relationship

is improved diffusion of knowledge through physical proximity (Jaffe et al., 1993; Glaeser, 1999; Atkin et

al., 2022). Knowledge spillovers among workers occur when individuals benefit from the skills of their local

peers and learn from each other, which increases productivity (Lucas, 1988; Cornelissen et al., 2017; De la

Roca and Puga, 2017). Knowledge spillovers are especially important in innovative sectors (Audretsch and

Feldman, 1996), where collaboration and learning are crucial (Carlino et al., 2007; Jones, 2009; Azoulay

et al., 2010; Combes et al., 2010; Andersson et al., 2014; Catalini, 2018). To exploit localized advantages

related to collaboration and knowledge exchange, workers and firms tend to locate near each other, especially

within a research field or industry (Alcácer and Chung, 2007; Carlino and Kerr, 2015; Moretti, 2021).

This leads to geographical agglomeration of tech industries in few cities (Carlino et al., 2012; Atkinson et

al., 2019). Surprisingly, software engineering, a key component of almost any high-tech endeavor today

(Chattergoon and Kerr, 2022), is characterized by a particularly high spatial concentration of workers in a

couple of large clusters (Kerr and Robert-Nicoud, 2020; Forman and Goldfarb, 2022; Wachs et al., 2022),

even though it is highly digitized and codified.

In this paper, we investigate agglomeration effects in software engineering. Specifically, we examine the

effect on software engineers’ productivity of being located in cities with a larger share of other software

engineers in their technology field. To this end, we exploit exogenous variation in cluster size resulting

from software engineers moving across cities and joining or leaving a specific technology, an approach

pioneered by Moretti (2021). This allows us to estimate the impact of changes in technology-specific cluster

size on software engineers’ productivity in the respective technology. We deploy a model that features a

restrictive number of high-dimensional fixed effects to elicit productivity effects, considering both output

quantity and quality as well as effect heterogeneity. Still, estimating agglomeration effects on productivity

poses further challenges such as simultaneity and correlated unobserved productivity shocks (Combes et al.,

2010). To address these challenges, we investigate effect dynamics and employ an instrumental variable

approach by predicting variation in local cluster size from changes originating elsewhere. This shift-share

approach ensures that the variation in cluster size is independent of technology-specific local productivity

shocks, mitigating potential bias in estimates of the elasticity of productivity with respect to cluster size.

Data from GitHub, the by far largest online code repository platform, allows us to track software engineers’

productivity at unprecedented resolution. Our data has several crucial advantages over patent data, which

the existing literature almost exclusively relies upon as a measure of productivity in the knowledge economy

(see, e.g., Jaffe et al., 1993; Carlino et al., 2007; Carlino and Kerr, 2015; Guzman and Stern, 2020). While

only a small share of knowledge workers files patents and there are large differences across fields and

idea types (Cohen and Lemley, 2001; Carlino and Kerr, 2015), coding is a much more widespread activity

and part of almost any high-tech project today (Andreessen et al., 2011; Tambe et al., 2020). GitHub
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data captures even smallest individual contributions to collaborative projects instantaneously with an exact

timestamp. In contrast, for inventor teams, it is unclear who contributed what and when. Only one team

outcome, the final patent application, is observable with a significant reporting lag. In addition, patents

differ widely in market value and often are never used in production (Boldrin and Levine, 2013; Kogan et

al., 2017). Code uploaded to GitHub is, by definition, more applied and always used in a software product or

component. We, therefore, propose code changes by users on GitHub, called commits, as a novel measure

of knowledge worker productivity and exploit the granularity and richness of the information from public

projects in the GHTorrent database (Gousios, 2013), such as the integrated social features on the platform,

to track the quantity and quality of software engineers’ individual output over time.

Our findings indicate that cluster size, the share of other users in a field located in the same city, positively

impacts software engineers’ productivity. Specifically, a ten percent increase in technology-specific cluster

size is associated with a 2.8 percent increase in user output in that technology. Non-parametric estimation

shows the elasticity of productivity with respect to cluster size is largest for clusters hosting between 0.67

and 13.5% of a technology-specific community. Agglomeration effects are smaller for clusters with a com-

munity share below or above this range, indicating clusters need a critical mass of users to reap significant

productivity benefits from agglomeration. An extensive set of fixed effects precludes that the productiv-

ity effect is driven by unobserved heterogeneity or trends. Additionally, contemporaneous effects and IV

estimation mitigate potential remaining concerns regarding endogeneity due to sorting and simultaneity.

Heterogeneity analyses suggest that the effects are significantly larger for high-quality projects with in-

creased use-value for the community as measured by stars and forks on the platform. Relative to the baseline

estimates, activity increases disproportionately with cluster size in longer-running, larger, and co-located

projects with more team members, indicating that especially collaborative projects are able to tap produc-

tivity spillovers from the wider local community. Additionally, we observe a higher activity increase in

leisure projects with a high share of commits out of business hours, which are typically not integrated in a

formal structure of an organization. Additional analyses demonstrate robustness of our results with respect

to measurement and modeling choices as well as sample construction.

This study contributes to three strands of literature. First, we add to the extensive literature exploring

agglomeration effects. There is growing descriptive evidence documenting increasing geographic concen-

tration of innovative activity (Verspagen and Schoenmakers, 2004; Bettencourt et al., 2007; Balland et al.,

2020) where collaboration and teamwork are essential (Wuchty et al., 2007; Jones, 2009). Agglomeration

is much less pronounced in manufacturing (e.g., Ellison and Glaeser, 1997), and recent evidence by Chat-

tergoon and Kerr (2022) links growing concentration to the rise in software intensity. Rising concentration

in knowledge-intensive sectors is remarkable as adoption of information and communication technology is

high and tends to reduce geographic frictions (Agrawal and Goldfarb, 2008; Steinwender, 2018; Goldbeck,

2023). Presence of strong localized knowledge spillovers (e.g., Audretsch and Feldman, 1996; Ganguli et

al., 2020; Catalini, 2018; Rosenthal and Strange, 2020) might explain rising geographic concentration. No-
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tably, Moretti (2021) estimates aggregate effects on inventor productivity of geographic clustering. We are

first to focus explicitly on software engineering and demonstrate that individual-level productivity effects of

agglomeration in this field are significantly higher.

Second, we advance the measurement of innovative activity by introducing a novel proxy for knowledge

worker productivity, the number of single code contributions to software engineering projects. This metric

helps us overcome several shortcomings of existing measures based on patent data, which the literature al-

most exclusively relies upon (Acs et al., 2002; Lerner and Seru, 2022). With the rise of the service economy

(Buera and Kaboski, 2012) software becomes ubiquitous in innovation (Andreessen et al., 2011; Chatter-

goon and Kerr, 2022). At the same time, software and information technology constitute an increasingly

important blind spot of patent data (Acikalin et al., 2022; Lin and Rai, 2024). Our measure addresses this

gap by proposing a more appropriate and reliable metric for innovative activity in software engineering.

Furthermore, our measurement approach is more broad-based, capturing a less exclusive set of individuals

compared to inventors, and granular both in terms of time resolution and assessment of individual output.

Third, our paper contributes to the understanding of peer effects. A large literature tries to quantify the extent

to which individuals benefit from their peers (Angrist, 2014; Herbst and Mas, 2015; Sacerdote, 2014). With

a historically strong focus on learning in educational institutions (Manski, 1993; Sacerdote, 2001; Jackson

and Bruegmann, 2009) and science (Azoulay et al., 2010; Waldinger, 2012), this body of research extends

to studies of the workplace and professional domain (Moretti, 2004; Mas and Moretti, 2009; Cornelissen

et al., 2017). We add to this literature by using plausibly exogenous variation in the density of local peers

to study their effect on individual-level productivity on a broad sample of knowledge workers in software

engineering. Our technology field-specific definition of relevant communities of peers shows that even

within software engineering, a fairly narrow domain according to traditional industry classifications, peer

effects are confined to specific sub-fields.

The remainder of this paper is organized as follows. We discuss the setting and data in Section 2. Section 3

introduces our empirical strategy. In Section 4, we report the results and Section 5 concludes with a brief

discussion.

2 Background and data

Today, software engineering is a crucial part of almost any scientific and innovative endeavor or high-tech

product (Andreessen et al., 2011; Webb et al., 2018; Tambe et al., 2020; Chattergoon and Kerr, 2022; Aum

and Shin, 2024), be it in artificial intelligence, engineering, app development, or the bio-pharmaceutical in-

dustry. For example, software engineers at the biotech company Moderna designed an artificial intelligence

that greatly improved the speed of mRNA drug discovery and development, leading to one of the first vac-

cines against Covid-19 on the market (Bean, 2024). In practice, the vast majority of software engineering

projects is hosted on the online code repository platform GitHub, which is based on the git version control
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system. The platform launched in 2008 and since then rapidly evolved as the main online platform for host-

ing code and collaborative software development (Fackler et al., 2020). A free basic version and its ease of

use due to seamless integration into software engineering tech stacks make GitHub attractive for over 100

million users (Dohmke, 2023). In addition, the platform exhibits features of a social network in line with its

motto “social coding” (Lima et al., 2014).

On the platform, users can create and collaborate in projects (repositories) to which code can be pushed,

i.e., uploaded. The smallest unit of user activity in projects is a commit, which captures the sum of code

changes a user sends to the project during a session. We introduce commits as a novel measure of software

developer productivity. Using commits has several advantages over patent data, the most commonly used

measure in the literature. Coding is essential in software development and therefore widespread, in contrast

to patenting, which also differs widely across different fields and idea types (Cohen and Lemley, 2001;

Carlino and Kerr, 2015). In addition, commits capture even small contributions by each individual with an

exact timestamp. In patent data, only one team outcome is observed with a significant reporting lag and

neither the nature nor the timing of individual members’ contributions are observed. Patents also differ

widely in use and value (Boldrin and Levine, 2013; Kogan et al., 2017); commits capture more applied

activity and are used in software by definition. The GitHub platform contains further information. For

example, users may star a project so that it is bookmarked for future reference. The number of stars per

project measures popularity among other users and is a proxy for project quality (Lima et al., 2014). User

profiles allow users to showcase their work and display public projects and activity as well as biographical

information such as a name, location and organizational affiliation.

We tap GHTorrent, a relational database that mirrors the GitHub REST API and creates approximately bian-

nual snapshots of public user profiles and activity on the platform. To obtain time-varying user information,

we query ten snapshots dated between September 2015 and March 2021 for profiles of users with location

in the US or Canada.1 For these users, we extract the activity stream with timestamped information on

commits and project activity from the latest available snapshot (March 2021). We then combine the activity

stream and user profiles into a panel with ten time intervals arising from the snapshot dates.2 Based on their

self-reported location, we assign users to one of the 179 US economic areas defined by the Bureau of Eco-

nomic Analysis or the Canadian equivalent, i.e., one of the 76 economic regions by Statistics Canada to city

coordinates via exact name matching.3 Economic areas delineate the “relevant regional markets surround-

ing metropolitan or micropolitan statistical areas” (Johnson and Kort, 2004). Generally, economic areas are

1Specifically, snapshots dates in our data are 2015/09/25 (201509), 2016/01/08 (201601), 2016/06/01 (201606), 2017/01/19
(201701), 2017/06/01 (201706), 2018/01/01 (201801), 2018/11/01 (201811), 2019/06/01 (201906), 2020/07/01 (202007) and
2021/03/06 (202103). Goldbeck (2023) validates user locations in GHTorrent. For users with a reporting gap in the location
information, we impute their location from the previous or next snapshot if possible.

2In GHTorrent, users are assigned a unique identifier. In principle, commits can be linked to users via author id or
committer id. Since users may commit code authored by someone else, we link by author id. This method ensures close
connection to individual productivity, but is conservative as many users possess multiple accounts (Casalnuovo et al., 2015).

3US and Canadian city coordinates are sourced form maps (Becker and Wilks, 2018) and SimpleMaps (Simplemaps, 2021).
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similar to Metropolitan Statistical Areas (MSAs), but tend to be larger than corresponding MSAs for big

cities to capture entire economic regions. Henceforth, we refer to this geographic definition as ‘cities’.

Figure 1: Agglomeration in software engineering

San Jose-San Francisco-Oakland  CA

New York-Newark-Bridgeport  NY-NJ-CT-PA

Seattle-Tacoma-Olympia  WA

Los Angeles-Long Beach-Riverside  CA
Washington-Baltimore-Northern Virginia  DC-MD-VA-WV

Dallas-Fort Worth  TX

Minneapolis-St. Paul-St. Cloud  MN-WI

0

20

40

60

cl
us

te
r s

iz
e 

[th
ou

sa
nd

s]

0 50 100 150 200 250
rank

(a) rank-size distribution

San Jose-San Francisco-Oakland  CA
New York-Newark-Bridgeport  NY-NJ-CT-PA

Washington-Baltimore-Northern Virginia  DC-MD-VA-WV
Dallas-Fort Worth  TX

Minneapolis-St. Paul-St. Cloud  MN-WI

0

2

4

6

8

10

12

cl
us

te
r s

iz
e 

[lo
g]

0 50 100 150 200 250
rank

(b) logarithmic size

Sources: GHTorrent, own calculations.

Figure 1 displays the strong spatial concentration of software engineers (see, e.g., Kerr and Robert-Nicoud,

2020; Forman and Goldfarb, 2022; Wachs et al., 2022; Goldbeck, 2023) by plotting the number of users

in each city as rank-size distribution. Silicon Valley (i.e., the economic area “San Jose–San Francisco–

Oakland, CA”) clearly stands out as the epitome of a tech cluster with more than 60 thousand users in our

data. Cluster size rapidly decays with city rank, with the next largest cities being New York, Seattle, Los

Angeles, and Washington, DC. About 50% of users are located in the ten largest cities. In contrast, the vast

majority of cities host only few users. The right panel displays the rank distribution using logarithmic city

size. Even here, geographic concentration in few large cities is prominently visible as the largest cities lie

well above the linear power-law approximation of the distribution.

Technology clusters Since agglomeration benefits from localized knowledge spillovers are concentrated

within related fields (see, e.g., Alcácer and Chung, 2007; Bloom et al., 2013; Carlino and Kerr, 2015;

Moretti, 2021), we define cluster size on the city × technology level. For this purpose, we exploit that a

programming language is recorded for each project and assign this programming language to every commit

in that project.4 We use the 18 most frequently occurring programming languages that cover about 90%

of all commits.5 Since different programming languages can be closely related, we group programming

4Programming languages are broadly defined and include databases and frameworks. Note that a project may contain files in
several programming languages. GHTorrent assigns the programming language that makes up the largest number of bytes in the
project.

5Limiting the total number of 404 programming languages to 18 avoids having a large number of cities with only one user in a
particular programming language.

5



languages into five ‘technologies’ based on being frequently used together according to a developer survey

(StackOverflow, 2020).6 We determine the technology of a user in each time interval via her commit activity.

For example, a user who commits to projects in technologies 1 and 3 in the second time interval and lives

in Los Angeles is part of the clusters Los Angeles × Technology 1 and Los Angeles × Technology 3 in

that time interval. Figure A.2 plots the rank-size distribution by technology, which shows a similar pattern

within technologies as for all technologies together (Figure 1). The top ten clusters by technology and their

respective user share are listed in Table A.2.

We hypothesize users benefit from being located in a city that hosts a larger share of the community in a

specific technology. To robustly compute cluster size, we require a minimum user activity of committing in

at least two time intervals.7 There are 478,957 such users with a location in the US or Canada. Cluster size

S for user i in time t in technology f in city c is computed as

S−i f ct =
∑ j ̸=i N j f ct

∑N j f t
, (1)

where the summation of users N across all users j in city c in technology f in time t, excluding user i, is

divided by the total number of users N in technology f in time t. The accuracy of our measure of cluster

size relies on users providing correct location information and maintaining up-to-date profiles. To maximize

benefits of the social network functionality and increase visibility for local peers, users generally have an

incentive to maintain correct profile information. Reassuringly, we exactly match 98.6% of locations. In

addition, Goldbeck (2023) finds no bias in the location information compared to patent data and Abou

El-Komboz and Goldbeck (2023) verify the timing of users’ location changes on the platform.

Sample For our regression analyses, we select North American users active throughout the observation

period, i.e., non-zero commits in all time intervals. This results in a sample of 21,116 users and 2,527,496

user-project-time observations. Summary statistics are reported in Table A.1. The median user makes 56

public code contributions per time interval, i.e., within about six months, and is active in two technologies.

Like on most online platforms, activity is heavily right-skewed. Only few projects receive stars and forks.

The median city hosts users active in 17 programming languages and all five technologies. Overall, our

sample captures a broad base of software engineers with constant activity on the platform that allows us to

measure meaningful changes in output.

6A visualization of the technology clusters can be found at https://insights.stackoverflow.com/survey/
2020#correlated-technologies; last accessed on 03/17/2023. Technology 1 contains JavaScript, CSS, HTML, PHP, C# and
TypeScript; Technology 2 Python, Shell, Go, Jupyter Notebook, and R; Technology 3 Ruby; Technology 4 Java, Objective-C, and
Swift; and Technology 5 C++, C and Rust.

7Note that actual user activity likely is much higher as only public activity is observed. We include users whose account was
created in the last time interval and who commit in that time interval.
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3 Estimation strategy

We study the effect of cluster size on productivity by estimating the following fixed-effects panel data model

via ordinary least squares:

ln(yi j f lct) = α+β ln(S−i f ct)+di +d j +dc f +dcl +dlt +dct +µi j f lct , (2)

where yi j f lct is the number of commits of user i in time interval t to project j located in city c in the

technology f and programming language l and S−i f ct is the cluster size in city c of the technology f in time

interval t, excluding user i. µi j f lct is an error term. We cluster standard errors at the city × technology level

to account for serial correlation. Importantly, this specification allows us to include a large amount of (high-

dimensional) fixed effects d that address many potential concerns regarding identification and ensures that

the identifying variation in cluster size originates from users moving between cities and starting or stopping

to be active in a technology field.

In particular, user fixed effects di capture time-invariant differences in user activity, and project fixed effects

d j account for project-specific activity differences. In addition, we include city × technology dc f and city ×
programming language dcl fixed effects to control for city-specific productivity differences within technolo-

gies and programming languages. For example, if programmers in Toronto focused on artificial intelligence

within projects, these fixed effects would account for the fact that such a specialization could systematically

affect observed activity. Similarly, programming language × time fixed effects dlt account for programming

language-specific time trends and city × time fixed effects dct consider changes in average productivity over

time for each city as well as changes in city size over time. These fixed effects would capture activity pat-

terns over time, e.g., caused by new cohorts of students learning to program in a language in project-based

courses at the start of the academic year.

Our coefficient of interest β captures the relationship between cluster size and user productivity conditional

on fixed effects. The identifying variation net of fixed effects comes from users relocating to another city

and starting or stopping to commit in a specific technology, similar to Moretti (2021). Thus, this relationship

can be causally interpreted if the included fixed effects eliminate endogeneity and the error term µi j f lct is

orthogonal to cluster size S−i f ct . Productivity spillovers from agglomeration are present if β is greater than

zero and absent if β is zero. In particular, a positive β implies a user’s productivity in a technology increases

with cluster size, i.e., the share of other users in that technology being located in the same city.

An endogeneity concern when estimating agglomeration effects are unobserved determinants in the error

term µi j f lct simultaneously affecting productivity and cluster size (Combes and Gobillon, 2015). In partic-

ular, potential concerns are sorting and simultaneity. Equation 2 accounts for most forms of sorting into

cities and technologies, e.g., due to (changes in) local amenities and infrastructure, by ability, or differences

in technology-specific productivity differences across cities. Still, reverse causality might arise when users
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whose productivity would have increased anywhere sort into larger clusters. Note that sorting into large clus-

ters on ability is not a concern, nor is sorting to the extent that it leads to an increase in cluster size affecting

productivity. Only when users with expected future productivity increases select into growing clusters. A

more salient potential concern is simultaneity due to unobserved time-varying productivity shocks that are

technology-specific, such as policies at the city level that target a specific technology coinciding with cluster

size growth.

We address potential bias due to unobserved time-varying productivity shocks at the city × technology level

using an instrumental variable (IV) approach similar to Autor et al. (2013). The idea is to use only the

part of variation in local cluster size that is arguably exogenous because it originates elsewhere. By that,

unobserved local productivity shocks at the city × technology level that affect both productivity and cluster

size simultaneously do not affect our estimate. To construct a valid instrument, we leverage a key feature

of online code platforms, namely the possibility to commit to projects from anywhere. We instrument local

cluster size by commits to local projects that originate elsewhere. Users on GitHub frequently contribute to

non-local projects, which provides sufficient variation in the number of committers from different cities. At

the same time, increases in activity originating elsewhere are unlikely to be an outcome of local productivity

gains and are arguably unrelated to unobserved local productivity shocks at the city × technology level.

In particular, we predict cluster size by changes in the number of non-local users in all projects of a particular

technology to which other local users commit, excluding the focal user’s projects8, relative to the change

in the overall number of users in that technology. We denote the sum of users committing to project j

in time interval t and technology f , excluding city c, as N j f (−c)t and its change between t − 1 and t as

∆N j f (−c)t = N j f (−c)t −N j f (−c)(t−1). We compute our instrument as

IVi f ct = ∑
s̸= ji

Ds f c(t−1)
∆Ns f (−c)t

∆N f t
, (3)

where Ds f c(t−1) indicates if project s in technology f was present in city c at time t − 1. Ns f (−c)t is the

logarithm of the sum of users committing to project s in technology f at time t in all cities but city c, and

to which user i does not commit. Consequently, ∆Ns f (−c)t is the change in the logarithm of the number of

users committing to project s in technology f at time t for all cities but city c and ∆N f t is the change in the

logarithms of the total number of users in technology f between time t −1 and t.

8We consider a user to be connected to a project if she ever committed to that project, not only in the current time interval.

8



4 Results

4.1 Main results

Table 1 reports the results from our baseline model in Equation 2. The first column conditions on user,

project, programming language, technology, city, and time fixed effects. The estimated elasticity of user

productivity with respect to cluster size in this specification is 0.1144, suggesting a positive relationship of

productivity and cluster size. Adding programming language × time fixed effects in the second column

accounts for trends in programming languages and technologies as well as language-specific productiv-

ity shocks common to all users. The decrease in effect size hints that larger clusters experience higher

productivity gains from increased popularity of programming languages most frequently used there. Af-

ter including city × technology fixed effects in the third column, the elasticity of cluster size increases to

0.1966 and becomes statistically significant at the five percent level. This specification takes into account

time-invariant technology-specific factors at the city level that affect user productivity. Higher task com-

plexity in large clusters (Balland et al., 2020) causing users to take longer for each commit compared to

equally productive workers elsewhere is a possible explanation for this increase in effect size. Accounting

for city × language fixed effects in column four leaves estimates virtually unchanged, suggesting that our

definition of technologies and clusters appropriately captures relevant software engineering communities.

Our preferred specification in column five adds city × time fixed effects to account for unobserved produc-

tivity shocks at the city level common to all technologies like policies improving local digital infrastructure

or the establishment of a presence by a large tech firm. This results in an estimated elasticity of productivity

with respect to cluster size of 0.2777, which is statistically significant at the five percent level. The increase

compared to column four suggests that city-specific productivity shocks or sorting on local amenities are

especially pronounced in smaller clusters. Overall, these results consistently point to significant agglom-

eration effects in software development. Users are more productive when located in a city with a higher

share of other users in their technology. Our preferred estimate implies users on average make 2.8% more

commits in a given technology when the share of other users in that technology is ten percent higher. This

finding suggests that, for example, a user’s number of commits in Technology 1 is expected to increase by

19% if she moves from Chicago to Seattle due to the larger community of users in Technology 1 there.

Compared to the agglomeration effect for top inventors estimated by Moretti (2021), we thus find a four

times larger elasticity for software engineers. Several factors might explain these stronger agglomeration

effects in software engineering. First, software engineers tend to be younger than patenting inventors and,

therefore, learning skills is more important to them in the human capital accumulation phase of their life

cycle (Ben-Porath, 1967).9 Second, the high degree of specialization in software development implies a

higher probability that the activity of local peers is relevant to the focal user, leading to a larger potential

9Survey results suggest that most software engineers in the US are aged 25-35 years (Patel, 2024; Stackoverflow, 2024),
whereas inventors are significantly older (Jones, 2010) with an average age of 45 years (Kaltenberg et al., 2023).
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for knowledge spillovers. Third, software is a particularly fast-moving field with a high degree of skill ob-

solescence (Deming and Noray, 2020) even within STEM fields, requiring continuous learning to maintain

and possibly increase productivity. Larger knowledge spillovers in software engineering compared to other

fields are a strong incentive for agglomeration, which might, at least partly, explain the particularly high

geographic clustering of programmers.

Table 1: Productivity and cluster size

Dep. var.: Commits [log] (1) (2) (3) (4) (5) (6)

Cluster size [log] 0.1144 0.1070 0.0929 0.1966∗∗ 0.1935∗∗ 0.2777∗∗
(0.1099) (0.0785) (0.0744) (0.0949) (0.0962) (0.1253)

Fixed effects
User Yes Yes Yes Yes Yes Yes
Project Yes Yes Yes Yes Yes Yes
Technology Yes Yes Yes Yes Yes Yes
Language Yes Yes Yes Yes Yes Yes
City Yes Yes Yes Yes Yes Yes
Time Yes Yes Yes Yes Yes Yes
Technology × time Yes Yes Yes Yes Yes
Language × time Yes Yes Yes Yes
City × technology Yes Yes Yes
City × language Yes Yes
City × time Yes

Users 21,116 21,116 21,116 21,116 21,116 21,116
Observations 2,527,496 2,527,496 2,527,496 2,527,496 2,527,496 2,527,496
Adjusted R2 0.287 0.289 0.290 0.291 0.291 0.292

Notes: Language refers to programming language. Robust standard errors clustered at the city × technology level in
parenthesis. ∗∗∗ p < 0.01, ∗∗ p < 0.05, and ∗ p < 0.1. Sources: GHTorrent, own calculations.

The elasticity of productivity with respect to cluster size might change depending on the position of cities

in the size distribution. For example, productivity spillovers potentially require a certain minimum cluster

size to occur as the benefits to individual productivity of only few other co-located users might be smaller.

In contrast, similar increases in cluster size might result in smaller relative productivity gains in the largest

clusters where already many users are co-located. The presence of both channels could give rise to an S-

shaped relationship of the elasticity with respect to cluster size. Au and Henderson (2006), for example,

estimate a bell-shaped relation between productivity and city size for Chinese cities and Cattaneo et al.

(2023) demonstrate an S-shape pattern for the elasticity of US inventors in Moretti (2021).

Figure 2 depicts a binscatter plot to investigate monotonicity and potential non-linearity in the effect. Fol-

lowing the principled approach of Cattaneo et al. (2024), we obtain a suitable data-driven visualization of the

conditional mean function. The relationship between productivity and cluster size is positively monotonous

and follows a slight S-shape. The function increases only slightly for very small cluster sizes, while produc-

tivity increases are larger for cluster sizes between approximately 0.67 and 13.5 percent. Above this range,

the increase is, again, less pronounced for the largest clusters. This suggests that significant agglomeration
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effects require a minimum cluster size of around 0.67 percent of the community in a technology being lo-

cated in the same city. At the same time, when cluster size reaches a level of approximately 13.5 percent,

there are little additional productivity gains from further growth in cluster size. This also suggests that our

effect is not driven by few large clusters such as the Bay Area. Rather, the effect is present across the entire

size distribution and features a slight S-shape with especially medium-sized clusters profiting from increases

in cluster size.

Figure 2: Non-parametric estimation
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Notes: Graph plots a binscatter representation of the relationship between software engineer
productivity and cluster size using binsreg (Cattaneo et al., 2023). Specification includes
fixed effects for time, technology, language, project, city, and user as well as for time × city,
time × technology, and city × technology. Sources: GHTorrent, own calculations.

4.2 Heterogeneity

We explore potential heterogeneity of the effect with respect to user and project characteristics. To explore

the relation between cluster size and quality of users’ activity, we focus on commits to the top ten projects

measured by the number of stars received from the community. Table 2 reports the main results for this

subsample. Generally, the point estimates are significantly larger across all specifications compared to our

baseline estimates. Effects are more precisely estimated, as well, even though the sample size is much

smaller, pointing to a tighter relationship between cluster size and productivity in high-quality projects. For

the preferred specification with the full set of fixed effects, the elasticity between cluster size and productivity

of 0.3239 implies that a user commits about 3.2 percent more in a technology to projects with at least

five stars with a ten percent increase in cluster size. This result indicates that the effect on high-quality

activity is about 4.6 percentage points (or 16.6%) higher relative to the full sample in Table 1. Note that

compared to specifications without city × time fixed effects, this difference is significantly smaller. This
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stresses accounting for time-varying unobservables at the city level like the opening of new large tech firm

establishments is especially important for high-quality activity.

Table 2: Quality

Dep. var.: Commits [log] (1) (2) (3) (4) (5) (6)

Cluster size [log] 0.1451 0.1359 0.1229 0.2649∗∗∗ 0.2637∗∗∗ 0.3239∗∗
(0.1043) (0.0866) (0.0828) (0.0860) (0.0867) (0.1462)

Fixed effects
User Yes Yes Yes Yes Yes Yes
Project Yes Yes Yes Yes Yes Yes
Technology Yes Yes Yes Yes Yes Yes
Language Yes Yes Yes Yes Yes Yes
City Yes Yes Yes Yes Yes Yes
Time Yes Yes Yes Yes Yes Yes
Technology × time Yes Yes Yes Yes Yes
Language × time Yes Yes Yes Yes
City × technology Yes Yes Yes
City × language Yes Yes
City × time Yes

Users 6,711 6,711 6,711 6,711 6,711 6,711
Observations 392,984 392,984 392,984 392,984 392,984 392,984
Adjusted R2 0.407 0.408 0.409 0.410 0.412 0.413

∆(βtop10 −βall) 0.0307 0.0289 0.0300 0.0683 0.0702 0.0462
∆(βtop10 −βall)/βall 0.2684 0.2701 0.3229 0.3474 0.3628 0.1664

Notes: Regressions based on the top decile of projects by stars. βtop10 denotes the estimated coefficient on
cluster size. βall refers to the estimated coefficient of cluster size from the corresponding specification in Table 1.
Robust standard errors clustered at the city × technology level in parenthesis. ∗∗∗ p < 0.01, ∗∗ p < 0.05, and ∗ p
< 0.1. Sources: GHTorrent, own calculations.

Table 3 explores heterogeneity with respect to further characteristics by estimating the relation of cluster

size and productivity by quartiles. The first specification reports the effects for each cluster size quartile.

Similar to Figure 2, the results point to a slight S-shape of the elasticity of productivity with respect to cluster

size. The differences are not pronounced as indicated by the Wald test, which yields a p-value of 0.170. The

second specification investigates differences with respect to project age, measured in months since project

creation. Theoretically, especially established projects might profit from cluster size as the initial set-up is

typically trivial while in later phases external impulses are more beneficial to further improve the project

(e.g., Ayoubi et al., 2017). Indeed, the elasticity increases with project age from 0.2639 (youngest quartile)

to 0.2899 (oldest quartile). This variation is confirmed significant as a Wald test is rejected with a p-value

of 0.046, suggesting that knowledge spillovers are larger for older projects. Next, we study differences in

the elasticity between business and leisure projects, which we elicit by the share of commits made during

business hours. We find a significant variation in the elasticity (Wald test p-value of 0.006), with leisure

projects benefiting more from increases in cluster size. Leisure projects typically exhibit less structure and

are not embedded in a professional environment with a higher degree of knowledge organization and thus can
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profit more from spillovers from the wider local community. The fourth specification tests for differences

in the elasticity with respect to user activity. Active users are often integrated more in local communities

and therefore might experience larger productivity gains. We find sizable differences in point estimates, but

the variation in the elasticity is not statistically significant (Wald test p-value 0.213). Thus, agglomeration

effects are not significantly lower for less active users.

Table 3: Heterogeneity (by quartiles)

Dep. var.: Commits [log] (1) (2) (3) (4)
cluster size project age business activity

1st Quartile (Smallest/Youngest/Leisure/Low) 0.2748∗∗ 0.2639∗∗ 0.2801∗∗ 0.2700∗∗
(0.1250) (0.1228) (0.1238) (0.1234)

2nd Quartile 0.2688∗∗ 0.2661∗∗ 0.2806∗∗ 0.2716∗∗
(0.1258) (0.1248) (0.1261) (0.1244)

3rd Quartile 0.2609∗∗ 0.2725∗∗ 0.2836∗∗ 0.2774∗∗
(0.1272) (0.1268 (0.1254) (0.1273)

4th Quartile (Largest/Oldest/Business/High) 0.2651∗∗ 0.2899∗∗ 0.2456∗∗ 0.3013∗∗
(0.1268) (0.1263) (0.1254) (0.1287)

Full set of FE Yes Yes Yes Yes

Users 21,116 21,116 21,116 21,116
Observations 2,527,496 2,527,496 2,527,496 2,527,496
Adjusted R2 0.292 0.292 0.292 0.292

Wald (joint nullity) [p-value] 0.170 0.046 0.006 0.213

Notes: Robust standard errors clustered at the city × technology level in parenthesis. ∗∗∗ p < 0.01, ∗∗ p < 0.05,
and ∗ p < 0.1. Sources: GHTorrent, own calculations.

In Table 4, we assess heterogeneity regarding binary characteristics by estimating the elasticity separately

for subgroups. Specifications one and two distinguish between small and large teams, where projects with

at least 5 team members are considered large. The estimated elasticity is almost twice as high for large

team projects, indicating that projects with more team members tend to benefit more from the wider local

community. This is in line with evidence suggesting that sourcing knowledge from community networks is

facilitated by larger team size (Lima et al., 2014). Specifications three and four confirm this notion by con-

trasting commits to distributed and fully co-located teams. Results show that the productivity increase within

fully co-located teams is significantly larger, also pointing towards knowledge spillovers compounding in

local teams. Furthermore, we use information on project ownership to separate full-fledged collaborative

coding projects from single-person projects that might not require following guidelines with clear expecta-

tions on how a contribution should look like (Elazhary et al., 2019). We do so by separately considering

commits to projects where the project owner is a different or the focal user in columns five and six. Results

show that agglomeration benefits occur almost exclusively in projects owned by other users. This strongly

points towards productivity gains in meaningful coding projects with a certain contribution standard.
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Table 4: Heterogeneity (binary)

Dep. var.: Commits [log]
team size geography ownership

(1) (2) (3) (4) (5) (6)
small large distributed co-located others own

Cluster size [log] 0.1706 0.3243∗∗ 0.2736∗∗ 0.2932 0.3061∗∗ 0.0669
(0.1217) (0.1599) (0.1303) (0.2504) (0.1494) (0.1417)

Full set of FE Yes Yes Yes Yes Yes Yes

Users 21,116 16,061 19,295 21,098 20,644 20,917
Observations 2,118,134 409,362 830,118 168,362 1,423,404 1,104,092
Adjusted R2 0.317 0.401 0.359 0.299 0.324 0.314

Notes: Robust standard errors clustered at the city × technology level in parenthesis. ∗∗∗ p < 0.01, ∗∗ p < 0.05, and ∗ p
< 0.1. Sources: GHTorrent, own calculations.

4.3 Endogeneity

Although our baseline fixed effects specification already precludes numerous endogeneity concerns, sorting

of users with an expected future productivity increase or simultaneous unobserved time-varying productivity

shocks on the city × technology level are remaining threats to identification. We address these concerns by

estimating the instrumental variable model in Equation 3.

The instrumental variable approach in Equation 3 addresses potential simultaneity of cluster size changes

and unobserved productivity shocks at the city × technology level. The first-stage results in Table 5 show

that cluster size changes elsewhere are a strong instrument for local cluster size changes as indicated by

an F-test of 1,480 in our preferred specification. The negative sign indicates cluster size growth outside

the local cluster is associated with a decrease in the share of users in that cluster locally. Using only this

plausibly exogenous variation in cluster size triggered by changes in cluster size elsewhere, the second-stage

results present an estimate of the elasticity of productivity with respect to cluster size that is unaffected by

potential technology-specific local simultaneity. Given the sample differences, the preferred specification in

column 4 yields a significant and comparable effect size to our baseline results and suggests simultaneity

does not drive our results.

We further assess the plausibility of endogeneity arising from sorting on expected future productivity growth

by investigating the dynamics of productivity changes. Sorting of users with future productivity growth in-

dependent of their location into larger clusters is unlikely to be tightly connected to the exact timing of

changes in cluster size due to movers and entry or exit into technologies of local users. In contrast, observ-

ing a strong contemporaneous reaction of productivity to cluster size growth would support agglomeration

effects as driver of productivity growth. We estimate the contemporaneous effect in a three-period model

with a lead, the contemporaneous period, and a lag in Table A.9. Results suggest a contemporaneous effect

with a magnitude comparable to our main effect. In the preferred specification, we find a significant contem-
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Table 5: 2SLS estimates

Dep. var.: ∆ln(commit) (1) (2) (3) (4)

First Stage -0.00001∗∗∗ -0.00001∗∗∗ -0.00001∗∗∗ -0.00001∗∗∗
(0.00000) (0.00000) (0.00000) (0.00000)

∆ln(cluster size) 0.20336 0.29913∗∗∗ 0.29436∗∗∗ 0.19829∗∗
(0.19268) (0.08786) (0.08690) (0.09711)

Fixed effects
Time Yes Yes Yes Yes
City Yes Yes Yes Yes
User Yes Yes Yes
Language Yes Yes
Language × time Yes

Users 18,302 18,302 18,302 18,302
Observations 500,665 500,665 500,665 500,665
F-test (1st stage) 466.53 1,317.96 1,336.73 1,479.94

Notes: Robust standard errors clustered at the city × technology level in parenthesis. ∗∗∗ p < 0.01, ∗∗ p <
0.05, and ∗ p < 0.1. Sources: GHTorrent, own calculations.

poraneous productivity increase of 0.2676 and insignificant reaction of productivity with a point estimate

close to zero before. This mitigates potential concerns regarding sorting on unobserved future productivity

shocks.

4.4 Robustness

We assess the robustness of our results via additional checks. Our main specification uses user density to

measure cluster size, i.e., the share of users in a technology located in a given city. We generally prefer user

density as it supports the notion of communities clustering geographically and users benefiting from being

in such a hub. As some models rely on absolute cluster size, we test for differences in such a specification in

Table A.4. Results vary only marginally, with an elasticity of 0.2777 in the specification with the full set of

fixed effects. The distribution of cluster sizes using both measures depicted in Figure A.1 is similar, as well.

Our preferred non-parametric estimation for functional form assessment in Figure 2 uses 18 bins to elicit

effect non-linearity with respect to cluster size. In Figure A.3, we extend the number of fixed effects used

and use a smaller number of bins that are IMSE-optimally selected according to Cattaneo et al. (2023)

for better representation of confidence bands. We generally observe a similar pattern across all binscatter

representations with a slight S-shape of productivity with respect to cluster size. As the higher number

of bins teases out the S-shape more clearly due to more narrowly spaced point estimates, we opt for this

representation as our preferred specification.

On the GitHub platform, most registered users are inactive in most snapshots. Thus, we impose an activity

requirement on our sample to study our population of interest, i.e., software engineers. In our main model,
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we require public activity in each of the ten time intervals in our sample to extract users with meaningful

involvement in software engineering on the platform. Note that this improves upon the existing literature that

is mainly focused on the top contributors (Vidoni, 2022). Nevertheless, in Table A.3 we relax this activity

requirement to demonstrate our results generalize to broader samples. As productivity changes become

less tractable for only occasional contributors, the estimated effect gets slightly smaller when reducing the

minimum number of time intervals with activity. Still, the effect size is generally similar in magnitude. Note

that we capture activity in public projects. As a consequence, overall activity of users is likely higher since it

also includes contributions in private repositories. Reassuringly, however, Goldbeck (2023) validates public

contributions to be representative of overall regional software developer activity.

A potential concern with respect to our productivity measure would be automatic activity, e.g., by bots. Non-

human activity due to bots is typically observed at high-frequency. We, therefore, exclude the top percentile

of users by number of commits in Table A.6. Note that this approach risks losing the most active software

engineers on the platform and therefore potentially underestimates our effect. Additionally, we estimate our

baseline model excluding projects with more than 40 users or 100 commits in Table A.5 in order to ensure

our results are not driven by large projects only. Similarly, in Table A.7 we present a specification without

the ten largest cities. We find results comparable to our baseline specification across all these specifications,

which indicates a broad-based effect that is not driven by automated contributions. An alternative measure

for quality on the platform are forks, i.e., copies of repositories into other repositories. Like stars, this

indicates use-value and community interest. Table A.8 reports the results, which show an even larger effect

than for stars.

5 Conclusion

Software is ubiquitous, and understanding the economics of its production by knowledge workers is crucial.

Yet, widely-used patent data has significant blind spots in software innovation that prevent comprehensive

studies of this important sector. We introduce a novel measure of individual software engineer productivity

based on granular data from the largest online code repository platform to overcome this challenge. We

use our measure to show that higher agglomeration effects compared to other industries can explain the

strong geographic concentration in the industry despite its high degree of digitization and, therefore, remote-

work capability. Specifically, we estimate individual productivity increases by 2.8 percent for a ten percent

increase in cluster size.

Our results have important policy and managerial implications. Most importantly, policymakers, firms, and

workers should incorporate the significant effects of localized knowledge spillovers in software engineer-

ing into their decision making. The sizable heterogeneity in agglomeration effects on knowledge worker

productivity has strong implications for regional policy. Results show effects are largest for cities hosting

above 0.67% but below 13.5% of a technology-specific community. Subsidizing new establishments such
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as Amazon’s HQ2 could thus be a more beneficial strategy for regions within that range. For smaller cities,

specialization in niche sub-fields where it is easier to attract a critical share of the community could be a

more viable path. On the other end of the spectrum, the largest cities with cluster sizes above 13.5% reap

smaller benefits from further community growth and might be better off with regional policies that deepen

knowledge exchange between existing knowledge workers.

Firms that are too small to significantly affect cluster size themselves can benefit from knowledge spillovers

from larger local communities, which is relevant for location decisions such as opening new or expanding

existing establishments. At the same time, our findings suggest that firms may be able to avoid the very

largest tech hubs – along with their high labor and real estate costs – while sacrificing little in terms of

knowledge spillovers. Our results imply significant spillovers to individual productivity from the wider

community that are higher for open innovation. A limitation of our data is that we do not observe activity

in private projects and therefore are unable to assess spillovers within organizations if contributions are not

made public. Further, the agglomeration effect is confined to specific sub-fields of software engineering

suggesting that defining relevant peer groups is crucial for assessments of potential productivity benefits

from agglomeration. For workers, our results highlight the importance of the location decision for individual

productivity in this fast-moving field and the benefits arising from the local community.
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Table A.1: Summary statistics

Variable var mean median min. max.
Activity

Commits per user 691,964,175.97 2,298 1,059 25 3,767,493.00
Commit per user per Snapshot 16,341,488.33 230 56 1 1,299,828.00
Technology per user per snapshot 1.23 3 3 1 5.00
Technology per user 1.27 2 2 1 5.00
Programming language per user per snapshot 4.19 7 7 1 18.00
Programming language per user 7.58 3 3 1 17.00

Projects
Users per project 27.62 2 1 1 2,381.00
Commits per project per snapshot 1.23 19 3 1 1,298,112.00
Stars per project 1,301,008.47 85 0 0 259,118.00
Forks per project 72,701.27 11 0 0 145,997.00
Project age [years] 6.10 5 5 0 13.36
Own project 0.24 0 0 0 1.00
Business share 0.14 1 1 0 1.00
Weekend share 0.09 0 0 0 1.00
Out of hour share 0.11 0 0 0 1.00
Local share 0.05 1 1 0 1.00

Clusters
Technology per city 0.88 5 5 1 5.00
Technology per city per snapshot 1.84 4 4 1 5.00
Programming language per city 22.05 14 17 1 18.00
Programming language per city per snapshot 27.15 10 11 1 18.00
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Table A.2: Top 10 clusters by technology

City cluster size

Technology 1

San Jose-San Francisco-Oakland, CA 0.10638
New York-Newark-Bridgeport, NY-NJ-CT-PA 0.08784
Seattle-Tacoma-Olympia, WA 0.05366
Los Angeles-Long Beach-Riverside, CA 0.04403
Indianapolis-Anderson-Columbus, IN 0.04387
Toronto 0.03732
Washington-Baltimore-Northern Virginia, DC-MD-VA-WV 0.03484
Boston-Worcester-Manchester, MA-NH 0.03233
Chicago-Naperville-Michigan City, IL-IN-WI 0.03200
Dallas-Fort Worth, TX 0.02390

Technology 2

San Jose-San Francisco-Oakland, CA 0.13441
New York-Newark-Bridgeport, NY-NJ-CT-PA 0.09031
Seattle-Tacoma-Olympia, WA 0.05627
Boston-Worcester-Manchester, MA-NH 0.04299
Los Angeles-Long Beach-Riverside, CA 0.04095
Washington-Baltimore-Northern Virginia, DC-MD-VA-WV 0.04039
Toronto 0.03375
Indianapolis-Anderson-Columbus, IN 0.03250
Chicago-Naperville-Michigan City, IL-IN-WI 0.03073
Denver-Aurora-Boulder, CO 0.02385

Technology 3

San Jose-San Francisco-Oakland, CA 0.14154
New York-Newark-Bridgeport, NY-NJ-CT-PA 0.11862
Seattle-Tacoma-Olympia, WA 0.04749
Chicago-Naperville-Michigan City, IL-IN-WI 0.04181
Los Angeles-Long Beach-Riverside, CA 0.04000
Washington-Baltimore-Northern Virginia, DC-MD-VA-WV 0.03808
Boston-Worcester-Manchester, MA-NH 0.03748
Denver-Aurora-Boulder, CO 0.03744
Toronto 0.03028
Indianapolis-Anderson-Columbus, IN 0.02649

Technology 4

San Jose-San Francisco-Oakland, CA 0.13405
New York-Newark-Bridgeport, NY-NJ-CT-PA 0.08113
Indianapolis-Anderson-Columbus, IN 0.05250
Seattle-Tacoma-Olympia, WA 0.05092
Los Angeles-Long Beach-Riverside, CA 0.04059
Toronto 0.03623
Washington-Baltimore-Northern Virginia, DC-MD-VA-WV 0.03382
Boston-Worcester-Manchester, MA-NH 0.03259
Chicago-Naperville-Michigan City, IL-IN-WI 0.03208
Dallas-Fort Worth, TX 0.02942

Technology 5

San Jose-San Francisco-Oakland, CA 0.13050
New York-Newark-Bridgeport, NY-NJ-CT-PA 0.06623
Seattle-Tacoma-Olympia, WA 0.05999
Los Angeles-Long Beach-Riverside, CA 0.04048
Indianapolis-Anderson-Columbus, IN 0.03647
Boston-Worcester-Manchester, MA-NH 0.03572
Washington-Baltimore-Northern Virginia, DC-MD-VA-WV 0.03342
Toronto 0.02954
Dallas-Fort Worth, TX 0.02884
Dayton-Springfield-Greenville, OH 0.02735
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Table A.3: User sample

Dep. var.: Commits [log] (1) (2) (3) (4) (5)
Min. time intervals with consecutive activity: 1 2 3 4 5

Cluster size [log] 0.1989∗ 0.1986∗ 0.1894∗ 0.1911∗ 0.2104∗∗
(0.1082) (0.1076) (0.1029) (0.1018) (0.1005)

Users 243,443 229,140 124,808 81,459 55,458
Observations 6,363,687 6,320,343 5,295,433 4,636,989 4,053,452
Adj. R2 0.173 0.180 0.227 0.249 0.261

Dep. var.: Commits [log] (6) (7) (8) (9) (10)
Min. time intervals with consecutive activity: 6 7 8 9 10

Cluster size [log] 0.2209∗∗ 0.2175∗∗ 0.2432∗∗ 0.2524∗∗ 0.2775∗∗
(0.1027) (0.1043) (0.1081) (0.1127) (0.1255)

Users 45,007 38,157 31,669 27,011 21,116
Observations 3,722,638 3,470,489 3,197,671 2,961,254 2,527,496
Adj. R2 0.268 0.273 0.278 0.284 0.292

Notes: Robust standard errors clustered at the city × technology level in parenthesis. ∗∗∗ p < 0.01, ∗∗ p < 0.05, and ∗ p < 0.1.
Sources: GHTorrent, own calculations.

Table A.4: Cluster size (number of users)

Dep. var.: Commits [log] (1) (2) (3) (4) (5) (6)

Cluster size [absolute, log] -0.2367∗∗∗ 0.1070 0.0929 0.1966∗∗ 0.1935∗∗ 0.2777∗∗
(0.0607) (0.0785) (0.0744) (0.0949) (0.0962) (0.1253)

Fixed-effects
User Yes Yes Yes Yes Yes Yes
Project Yes Yes Yes Yes Yes Yes
Technology Yes Yes Yes Yes Yes Yes
Language Yes Yes Yes Yes Yes Yes
City Yes Yes Yes Yes Yes Yes
Time Yes Yes Yes Yes Yes Yes
Technology × time Yes Yes Yes Yes Yes
Language × time Yes Yes Yes Yes
City × technology Yes Yes Yes
City × language Yes Yes
City × time Yes

Users 21,116 21,116 21,116 21,116 21,116 21,116
Observations 2,527,496 2,527,496 2,527,496 2,527,496 2,527,496 2,527,496
Adj. R2 0.288 0.289 0.290 0.291 0.291 0.292

Notes: Language refers to programming language. Robust standard errors clustered at the city × technology level in
parenthesis. ∗∗∗ p < 0.01, ∗∗ p < 0.05, and ∗ p < 0.1. Sources: GHTorrent, own calculations.
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Table A.5: Robustness (excluding largest projects)

Dep. var.: Commits [log] (1) (2) (3) (4) (5) (6)

Cluster size [log] 0.1006 0.0927 0.0787 0.1625∗ 0.1586∗ 0.2773∗∗
(0.1002) (0.0674) (0.0636) (0.0941) (0.0954) (0.1168)

Fixed effects
User Yes Yes Yes Yes Yes Yes
Project Yes Yes Yes Yes Yes Yes
Technology Yes Yes Yes Yes Yes Yes
Language Yes Yes Yes Yes Yes Yes
City Yes Yes Yes Yes Yes Yes
Time Yes Yes Yes Yes Yes Yes
Technology × time Yes Yes Yes Yes Yes
Language × time Yes Yes Yes Yes
City × technology Yes Yes Yes
City × language Yes Yes
City × time Yes

Users 20,905 20,905 20,905 20,905 20,905 20,905
Observations 2,382,259 2,382,259 2,382,259 2,382,259 2,382,259 2,382,259
Adjusted R2 0.256 0.258 0.260 0.260 0.260 0.261

Notes: Language refers to programming language. Robust standard errors clustered at the city × technology level in
parenthesis. ∗∗∗ p < 0.01, ∗∗ p < 0.05, and ∗ p < 0.1. Sources: GHTorrent, own calculations.

Table A.6: Robustness (excluding most active users)

Dep. var.: Commits [log] (1) (2) (3) (4) (5) (6)

Cluster size [log] 0.0841∗∗∗ 0.0797∗∗ 0.0672∗∗ 0.1353∗∗ 0.1341∗∗ 0.1724∗∗
(0.0321) (0.0325) (0.0321) (0.0595) (0.0596) (0.0798)

Fixed effects
User Yes Yes Yes Yes Yes Yes
Project Yes Yes Yes Yes Yes Yes
Technology Yes Yes Yes Yes Yes Yes
Language Yes Yes Yes Yes Yes Yes
City Yes Yes Yes Yes Yes Yes
Time Yes Yes Yes Yes Yes Yes
Technology × time Yes Yes Yes Yes Yes
Language × time Yes Yes Yes Yes
City × technology Yes Yes Yes
City × language Yes Yes
City × time Yes

Users 20,905 20,905 20,905 20,905 20,905 20,905
Observations 2,277,873 2,277,873 2,277,873 2,277,873 2,277,873 2,277,873
Adjusted R2 0.283 0.284 0.285 0.285 0.285 0.286

Notes: The 1% most active users (476 users) are excluded. Language refers to programming language. Robust
standard errors clustered at the city × technology level in parenthesis. ∗∗∗ p < 0.01, ∗∗ p < 0.05, and ∗ p < 0.1.
Sources: GHTorrent, own calculations.
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Table A.7: Robustness (excluding largest clusters)

Dep. var.: Commits [log] (1) (2) (3) (4) (5) (6)

Cluster size [log] 0.1239 0.1133 0.0978 0.2006∗∗ 0.1973∗∗ 0.3003∗∗
(0.1143) (0.0824) (0.0776) (0.0960) (0.0975) (0.1305)

Fixed effects
User Yes Yes Yes Yes Yes Yes
Project Yes Yes Yes Yes Yes Yes
Technology Yes Yes Yes Yes Yes Yes
Language Yes Yes Yes Yes Yes Yes
City Yes Yes Yes Yes Yes Yes
Time Yes Yes Yes Yes Yes Yes
Technology × time Yes Yes Yes Yes Yes
Language × time Yes Yes Yes Yes
City × technology Yes Yes Yes
City × language Yes Yes
City × time Yes

Users 20,640 20,640 20,640 20,640 20,640 20,640
Observations 2,451,163 2,451,163 2,451,163 2,451,163 2,451,163 2,451,163
Adjusted R2 0.289 0.291 0.293 0.293 0.293 0.294

Notes: The 5% largest cities (10 cities) are excluded. Language refers to programming language. Robust standard
errors clustered at the city × technology level in parenthesis. ∗∗∗ p < 0.01, ∗∗ p < 0.05, and ∗ p < 0.1. Sources:
GHTorrent, own calculations.
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Table A.8: Quality (forks)

Dep. var.: Commits [log] (1) (2) (3) (4) (5) (6)

Cluster size [log] 0.1438 0.1354 0.1234 0.2779∗∗∗ 0.2742∗∗∗ 0.3789∗∗∗
(0.1030) (0.0851) (0.0815) (0.0881) (0.0891) (0.1448)

Fixed effects
User Yes Yes Yes Yes Yes Yes
Project Yes Yes Yes Yes Yes Yes
Technology Yes Yes Yes Yes Yes Yes
Language Yes Yes Yes Yes Yes Yes
City Yes Yes Yes Yes Yes Yes
Time Yes Yes Yes Yes Yes Yes
Technology × time Yes Yes Yes Yes Yes
Language × time Yes Yes Yes Yes
City × technology Yes Yes Yes
City × language Yes Yes
City × time Yes

Users 7,135 7,135 7,135 7,135 7,135 7,135
Observations 427,991 427,991 427,991 427,991 427,991 427,991
Adjusted R2 0.405 0.405 0.406 0.408 0.409 0.411

∆(βtop10 −βall) 0.0294 0.0284 0.0305 0.0813 0.0807 0.1012
∆(βtop10 −βall)/βall 0.2045 0.2097 0.2472 0.2926 0.2943 0.2671

Notes: Regressions based on the top decile of projects by forks. These are 7,135 projects with at least four
forks.βtop10 denotes the estimated coefficient on cluster size. βall refers to the estimated coefficient of cluster size
from the corresponding specification in Table 1. Robust standard errors clustered at the city × technology level
in parenthesis. ∗∗∗ p < 0.01, ∗∗ p < 0.05, and ∗ p < 0.1. Sources: GHTorrent, own calculations.
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Table A.9: Dynamic estimates

Dep. var.: Commits [log] (1) (2) (3) (4) (5) (6)

β(t =−1) 0.0001 -0.0006 -0.0004 -0.0001 0.0011 0.0015
(0.0101) (0.0089) (0.0087) (0.0089) (0.0091) (0.0094)

β(t = 0) 0.1204 0.1120 0.0973 0.1301 0.1302 0.2676∗∗
(0.1097) (0.0793) (0.0753) (0.1232) (0.1239) (0.1267)

β(t = 1) -0.0021 -0.0023 -0.0029 -0.0027 -0.0023 -0.0016
(0.0109) (0.0111) (0.0112) (0.0111) (0.0112) (0.0110)

Fixed effects
User Yes Yes Yes Yes Yes Yes
Project Yes Yes Yes Yes Yes Yes
Technology Yes Yes Yes Yes Yes Yes
Language Yes Yes Yes Yes Yes Yes
City Yes Yes Yes Yes Yes Yes
Time Yes Yes Yes Yes Yes Yes
Technology × time Yes Yes Yes Yes Yes
Language × time Yes Yes Yes Yes
City × technology Yes Yes Yes
City × language Yes Yes
City × time Yes

Users 21,116 21,116 21,116 21,116 21,116 21,116
Observations 1,532,335 1,532,335 1,532,335 1,532,335 1,532,335 1,532,335
Adjusted R2 0.331 0.332 0.333 0.334 0.334 0.335

Notes: Robust standard errors clustered at the city × technology level in parenthesis. ∗∗∗ p < 0.01, ∗∗ p < 0.05, and ∗

p < 0.1. Sources: GHTorrent, own calculations.
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A.2 Figures

Figure A.1: Technology cluster size distribution
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Sources: GHTorrent, own calculations.
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Figure A.2: Agglomeration by technology
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Sources: GHTorrent, own calculations.
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Figure A.3: Binscatter specification
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(a) preferred (18 bins)
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(b) preferred (IMSE-optimal)
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(c) extended (18 bins)
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Notes: Graph plots a binscatter representation of the relationship between software engineer productivity and cluster size using
binsreg (Cattaneo et al., 2023). Our preferred specification includes fixed effects for time, technology, language, project, city,
and user as well as for time × city, time × technology, and city × technology. The extended specification additionally features
time × language and language × city fixed effects. Shaded areas represent 90% confidence intervals. Sources: GHTorrent, own
calculations.
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