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Abstract

Digital work settings potentially facilitate remote collaboration and thereby decrease geographic fric-
tion in knowledge work. Here, I analyze spatial collaboration patterns of some 191 thousand software
developers in the United States on the largest code repository platform GitHub. Using a gravity frame-
work that accounts for cluster size, I show that colocated developers collaborate about nine times as
much as non-colocated developers. This colocation effect is much smaller than in less digital social or
inventor networks. Additionally, further increased geographic distance is of little relevance to collabo-
ration. Heterogeneity analyses demonstrate the colocation effect is smaller within larger organizations,
for high-quality projects, among experienced developers, and for sporadic interactions. Overall, this
suggests geographic proximity is indeed less important for collaboration in a digital work setting.
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1 Introduction

Digitization and the ICT revolution allow shifting collaboration entirely into the digital space leading to

the ‘death of distance.’ This hypothesis has been prominently put forward by Cairncross (1997) at the

heyday of the IT boom and has recently gained traction again through Baldwin (2019) while being further

fueled by the rapid uptake of remote work during the pandemic. Unlike previous transformations in the

labor market, online collaboration affects especially white-collar occupations in the knowledge economy

that are driving innovation and thus long-run economic growth (Romer, 1986; Harrigan et al., 2021, 2023).

However, compelling empirical evidence supporting the ‘death of distance’ hypothesis is scant, while there

are numerous studies finding increased spatial concentration of knowledge-intensive economic activity in

a few large centers (see, e.g., Chattergoon and Kerr, 2022; Moretti, 2021; Forman et al., 2016). Scholars

proposed various explanations for this, including the importance of face-to-face interaction (Atkin et al.,

2022; Battiston et al., 2021), positive industry-cluster spillovers (Arkolakis et al., 2023; Greenstone et al.,

2010), and benefits from local labor market size (Moretti and Yi, 2023; Dauth et al., 2022; Manning and

Petrongolo, 2017). Still, with digital tools rapidly evolving and their growing adoption, it remains an open

question to what extent ‘distance is dying.’

Knowledge work is expected to be particularly susceptible to the ‘death of distance’ since many tasks are

already digitized. Here, study software development as an integral and increasingly important part of the

knowledge economy: software is not only a key sector on its own (Korkmaz et al., 2024) but also an om-

nipresent element to other products (Nagle, 2019; Andreessen, 2011). Yet, comprehensive empirical evi-

dence on spatial collaboration of software developers is lacking.1 Software development also is characteris-

tic for knowledge work more generally since it is typically a collaborative effort, which research suggests is

increasingly the case in all high-skilled professions as work becomes more specialized and complex (Jones,

2009; Wuchty et al., 2007). This makes collaboration an important driver of high-skilled labor productivity

(Hamilton et al., 2003; Simon, 1979; Arrow, 1974). Additionally, even within the knowledge economy,

the ‘death of distance’ hypothesis applies particularly strongly to software development for two reasons:

First, software development is already routinely performed using an ecosystem of digital tools that facili-

tate cloud-based collaborative development in teams. Thus, it is a prototypical setting where collaboration

theoretically can be shifted completely into the virtual space (Emanuel et al., 2023).2 Second, software de-

velopment is by nature codified to a higher degree than other knowledge work, which facilitates knowledge

transmission over distance (Carlino and Kerr, 2015).

1The main reasons for this are that software is generally harder to patent and easy to keep as a trade secret, and therefore
incompletely and selectively observed in widely-used patent data (Jedrusik and Wadsworth, 2017).

2Occupation-level estimates by Dingel and Neiman (2020) report 100% of jobs in related occupations can be done remotely.
Related SOC occupations include e.g. Computer and Information Research Scientists, Computer Systems Analysts, Computer
Programmers, Software Developers (Applications), Software Developers (Systems Software), Web Developers, and Database Ar-
chitects. High potential to work remotely has been confirmed during the COVID-19 pandemic when the IT sector ranked among
the industries with the highest work-from-home take-up in the United States (Dey et al., 2020).
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In this article, I ask if there is empirical evidence of a subdued relevance of geographic distance for col-

laboration in software development. Drawing on detailed georeferenced network data from the largest code

repository platform, GitHub, I analyze regional collaboration patterns of some 191 thousand U.S. software

developers in public projects between 2015 and 2021. I focus on the U.S. as a large and integrated market

with relatively few cultural and language barriers and thus lower barriers to collaboration across space. The

data is representative of the overall activity of software developers and offers unique and comprehensive

insights into the industries’ production process. In a first step, I estimate non-parametric and gravity-type

regression models to explain spatial collaboration patterns and distinguish the colocation effect from the

general relevance of increased distance and cluster size. In a second step, I compare the observed patterns to

two other networks that are arguably less digital, albeit to a different degree: the (computer science) inventor

network and the social network. A third step aims to unravel potential drivers of the observed spatial col-

laboration pattern. To this end, I leverage detailed information on the type of collaboration and individuals’

characteristics to estimate the group-specific colocation effect depending on organizational affiliation, user

and project characteristics, as well as collaboration intensity and quality.

I find colocation is on average associated with about nine times higher collaboration among software devel-

opers, conditional on economic-area characteristics. Further increases in geographic distances are of little

importance to collaboration. Although the colocation effect in digital knowledge work is sizable, compared

to less digital networks it is relatively small. First, the colocation effect in the closely related collaboration

network of computer science inventors is about three times larger while both networks feature a dichoto-

mous geographic pattern with a large colocation effect but further increased geographic distance being of

little relevance. As the general mode of working and underlying population overlap, these results are in

line with higher face-to-face interaction requirements as computer science inventors work on more creative,

novel, and innovative projects (see, e.g., Akcigit et al., 2018). Second, the colocation effect for software

developers is about four times smaller than in social networks of the general working-age population, a

benchmark where physical proximity is essential. While further increased geographic distance is of little

relevance in the knowledge worker network, it remains a strong and defining force for regional connected-

ness probability in the social network. Granular data on the type of collaboration reveals that collaborating

users colocate less if they belong to the same (large) organization. Moreover, sporadic collaboration is less

colocated than intensive interactions, suggesting it is harder to establish and maintain in-depth work rela-

tionships remotely. Further, inexperienced users tend to collocate more than their experienced peers and

users match with similarly experienced peers locally while they typically find more experienced developers

remotely.

The contribution of this study is threefold. First, while existing works (e.g., Azoulay et al., 2010; Catalini,

2018; Head et al., 2019) provide consistent evidence that colocation increases collaboration, comprehensive

insight into spatial collaboration patterns in a setting with the potential to be fully virtual is lacking. This

article presents representative evidence for such a setting and reveals a dichotomy with respect to geography
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in the sense that there is a large colocation effect, but apart from that geographic distance is not an important

driver of collaboration. Second, I show the colocation effect in a prototypical setting of digital knowledge

work is much smaller compared to arguably less digital environments. This provides empirical evidence in

line with the ‘death of distance’ hypothesis that counters the otherwise strong agglomeration effects leading

to geographic clustering (e.g., Jaffe et al., 1993; Keller and Yeaple, 2013; Moretti, 2021). Third, previous

studies focus on challenges for organizations in managing remote teams (e.g., Gray et al., 2015; Bloom et

al., 2022; Yang et al., 2022) while works that compare collaboration within organizations to collaboration

between or outside firms is scarce (Duede et al., 2024; Giroud et al., 2022). My findings emphasize the role

of large organizations in facilitating remote collaboration as opposed to collaboration outside or between or-

ganizations. Large organizations, especially big tech firms, are systematically associated with much smaller

colocation effects. At the same time, data suggests that there is still substantial cost associated with remote

collaboration as it tends to be less intense than colocated interaction. In line with Emanuel et al. (2023),

results point to colocation being especially valuable for inexperienced workers.

The remainder of this paper is organized as follows. In Section 2, I present the data and Section 3 outlines

the empirical approach. Section 4 reports the results and Section 5 concludes with a brief discussion.

2 Data

In the last two decades, the adoption of new digital tools for collaborative software development drastically

improved workflow and organization of software development projects and enabled developers to work

together both on-site and remotely in teams via cloud-based online code repositories. These repositories

are maintained using the integrated version control software git. Version control with git can be highly

customized in combination with local code repository copies and is controlled conveniently via the native or

GUI-integrated command line. GitHub is by far the largest online code repository platform. It was founded

in 2008, reached 10 million users by 2015, and in 2021 reported 73 million users worldwide (GitHub, 2021;

Startlin, 2016). Since many developers routinely engage in open-source software development, a large

number of repositories are public (GitHub, 2021). Due to the nature of the version control system git, a

detailed history of code changes and contributing users is available online for public repositories. I tap this

information as novel data source to measure spatial collaboration patterns of software developers.

Data analyzed in this paper originates from GHTorrent, a research project by Gousios (2013) that mirrors

the data publicly available via the GitHub API and generates a queryable relational database in irregular

time intervals.3 The resulting snapshots contain data from user profiles and repositories as well as a detailed

activity stream capturing all contributions to and events in public repositories. I rely on ten GHTorrent snap-

shots dated between 09/2015 and 03/2021, i.e., roughly one snapshot every seven months.4 Overall, the data
3Data from the GHTorrent project is publicly available at ghtorrent.org.
4Snapshots are dated 2015/09/25, 2016/01/08, 2016/06/01, 2017/01/19, 2017/06/01, 2018/01/01, 2018/11/01, 2019/06/01,

2020/07/17, and 2021/03/06.
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contains 44.1 million users worldwide. For my spatial analysis of software developer collaboration in the

United States, I select the sample of GitHub users according to three criteria: (1) the user reports a location

that refers to a city-level location within the United States; (2) the user is active in the observation period,

i.e., contributes at least once in two time intervals between data snapshots5; and (3) the user collaborates,

i.e., contributes to at least one project with another in-sample user. This yields a sample of 190,637 active,

collaborating users geolocated in the United States during the observation period from 2015 to 2021, who

contribute to about 4.3 million repositories, i.e., open-source code projects on the platform. In total, they

make roughly 97.3 million single code contributions to these projects, so-called commits, and form 10.1

million links among each other.

Each user is assigned to one of 179 economic areas in the United States as defined by the Bureau of Economic

Analysis based on the self-reported geolocation on her user profile. Locations are georeferenced via exact

string matching to U.S. cities in the World Cities Database and then assigned to respective economic areas

via their latitude and longitude and Bureau of Transportation Statistics’s economic-area shapes. I choose this

regional level such that it is both sufficiently detailed to study colocation and distance effects, provides an

adequate level of aggregation given the number of users in each economic area, and respects the precision

of users’ location input. The Bureau of Economic Analysis economic areas define the “relevant regional

markets surrounding metropolitan or micropolitan statistical areas” (Johnson and Kort, 2004). Economic

areas are similar to metropolitan statistical areas (MSA) in most cases. To capture entire economic regions,

economic areas tend to be larger than corresponding MSAs for big cities.

Figure 1: Geographic user distribution and collaboration network

Notes: Map shows the number of (in-sample) users per economic area. The remote economic areas
Anchorage, AK, and Honolulu, HI, are not shown. Sources: GHTorrent, own calculations.

5New users in the last time interval are regarded as active if they contribute in this time interval.
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Figure 1 maps the spatial distribution of users and their collaborations. Darker blues represent clustering of

a high number of users, with the ten largest economic areas accounting for 79.8% of users. This compares to

68.9% for inventors of computer science patents (Moretti, 2021) and 32.2% for economic area population.

Red edges represent inter-regional links with above 20,000 collaborations. The strongest inter-regional

links are formed between the largest economic areas, with the Bay Area as the central hub. As a result of the

location of the central nodes, many important inter-regional links span long distances between the opposite

coasts. A notable property of collaborations is the extent to which they are local. Although the average

economic area contains only 0.6% of users, 4.7% of all links of economic-area users are local, i.e., between

users that are both located within the economic area. This implies collaborations are, compared to random

link formation, on average disproportionally local by a factor of 7.8.

For comparison, I tap two additional data sources. First, I use patent filings from Patstat between 2015

and 2021 and source inventor locations from Seliger et al. (2019) and extract inventors of collaborative

patents located in the U.S. With this information, I define inventor collaborations similar to the definition

of software developer collaboration, i.e., as having filed at least one joint patent. To get a sample that is

as similar as possible to software developers, I select inventors of computer science patents.6 I arrive at a

sample of around 17,000 U.S. inventors that filed a collaborative computer-science patent in the observation

period.

As a second benchmark, I use regional connectedness in the social network from Facebook. Connections

on Facebook map to a large extent to real-world friendship, family and acquaintanceship ties. As such,

observed regional network data constructed form active users on Facebook are an adequate representation

of real-world social networks. Bailey et al. (2018) construct a regional index of social connectedness for

the United States. The so-called Social Connectedness Index (SCI) measures the relative probability of

connection between users in two regions i and j by

indexi, j =
linksi, j

usersi ∗users j
, (1)

scaled to numbers between 1 and 1,000,000,000. I similarly compute a scaled index using the GHTorrent

data sample, which I call GH Connectedness Index (GHCI).7 Importantly, the index is independent of region

size by construction.

3 Empirical approach

To assess the relation between collaboration an geographic distance, differences in collaboration potential

have to be accounted for. In particular, regional collaboration patterns are likely driven by collaboration

6More information on data preparation is provided in the Appendix.
7For details on index construction, and aggregation see the Appendix. Figure A.7 shows histograms of scaled GHCI and SCI.
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potential, i.e., the number of users in the origin and destination region. Therefore, I apply residualized

binscatter regression analysis as a non-parametric estimation procedure (Stepner, 2013) that partials out

covariates using the Frisch-Waugh-Lovell theorem (Frisch and Waugh, 1933). The conditional expectation

function (CEF) is

E[ linksi, j |Xi, X j, Xi, j ], (2)

where linksi, j denotes the median number of collaborations between regions i and j including i = j for

colocated links. To account for collaboration potential, I condition on a vector of cluster size controls Xi, j,

specifically, the number of origin and destination users, their squared terms (to allow for nonlinear effects),

and their logarithmic multiplication to capture bilateral collaboration potential. The binscatter representation

of the CEF mapping residualized collaboration against the geodesic distance between origin and destination

centroids displays a consistent non-parametric estimate of the relationship between collaboration and ge-

ographic distance. To capture local behavior adequately while retaining straightforward interpretation, I

choose the number of bins J = 100, i.e., each bin representing one percentile of observations.

To quantify the relationship between colocation, distance, and collaboration in a more principled way, I

follow the vast literature originating from Tinbergen (1962) and estimate a parsimonious gravity model of

the form

ln(linksi, j) = β0 +β11{coloci, j}+β2disti, j +Xiβ3 +X jβ4 +Xi, jβ5 + εi, j (3)

where logarithmic collaborations ln(linksi, j) are explained by a colocation indicator marking collaboration

between users in the same economic area, 1{coloci, j}, a distance term disti, j, and origin and destination

economic-area characteristics.8 As control variables, I either include origin and destination economic-area

characteristics, Xi and X j, or origin and destination economic-area fixed effects. To control for collabora-

tion potential, I add the multiplication of origin and destination users Xi, j. The coefficient β1 captures the

colocation effect, i.e., how much higher local collaboration is relative to non-local collaboration, conditional

on covariates. Likewise, the semi-elasticity with respect to distance, β2, informs how collaboration relates

to an increase in geographic distance, accounting for the colocation effect and covariates. The error term is

denoted by εi, j and I use heteroskedasticity-robust standard errors.

I am interested in differences in the spatial collaboration pattern between a digital work setting, i.e., software

development, and arguably less digital settings. Therefore, I compare spatial collaboration patterns among

software developers to the (computer science) inventor collaboration network and the social network. Both

benchmark networks are less digital than software development because they are more intensive in face-

to-face interaction, but arguably to very different degrees. Although there are other differences than their

8To deal with unconnected economic areas, I follow a common solution from the trade literature and avoid omission by adding
one before the logarithmic transformation of the number of links between each economic area pair.
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degree of face-to-face intensity as well, these comparisons can offer suggestive evidence on the impact of

digital work settings and provide more context to the observed colocation effect in the software developer

network.

Computer science inventors are a natural comparison group for software developers for multiple reasons.

First, both groups are comprised of high-skilled individuals. Second, both perform similar work in the same

field that is mostly characterized by non-routine cognitive tasks. Third, both typically work in an office

setting with high computer use intensity. Still, the work of inventors is more creative, innovative, and novel

and therefore more face-to-face intensive, i.e., cannot be done virtually to the same extent (see, e.g., Atkin

et al., 2022; Yang et al., 2022; Brucks and Levav, 2022; Gibbs et al., 2023). Furthermore, all developers

on GitHub by definition use digital tools while this is unlikely true for inventor teams. Hence, I put the

effect size observed for software developers in context by comparing the regional collaboration pattern in

the software developer network to the pattern in the inventor network by using the same methods as for

software developers.

Compared to both the inventor and the software developer network, social relationships are arguably even

more demanding in terms of physical proximity even though digital tools such as online social networks

greatly facilitate (remote) communication. In that sense, they are the least digital setting among the three

networks studied. A comparison of spatial collaboration patterns in software developer and inventor net-

works to social networks informs on general differences between professional digital collaboration and

face-to-face intensive social interaction. For comparing the developer to the social network, I employ a

slightly different approach since social connectedness is only available as connectedness index. For the pur-

pose of flexibly estimating the relationship between the indices and distance, I follow Royston and Altman

(1994) and fit regressions with fractional polynomials x allowing for the standard set of (repeatable) powers

pi suggested in Royston and Sauerbrei (2008) by

x(p1,p2,...,pm)β = β0 +β1x(p1)+β2x(p2)+ ...+βmx(pm) (4)

where x(0) = lnx and each repeated power multiplies with another lnx. I then estimate the colocation effect

for both the GHCI and SCI as the relation of the predicted values at a distance of zero to the smallest

non-zero distance of the respective connectedness index ĈI, i.e.,

ĈI(dist = 0)
ĈI(min{dist |dist ̸= 0})

. (5)

Note that this approximation is conservative in the presence of differences between GHCI and SCI in fur-

ther spatial decay with geographic distance beyond min{dist |dist ̸= 0} due to the smoothing in fractional

polynomial estimation.
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4 Results

4.1 Main results

Figure 2 plots the binscatter representation of the residualized relationship between collaboration and geo-

graphic distance. The first distance percentile, which essentially captures colocation, is clearly elevated.9

Apart from this colocation effect, the conditional expectation function is flat over the whole distance range.

Excluding the first percentile, residual medians range between 308 and 409 with a mean of 343. Being colo-

cated (i.e., in the first distance percentile) increases median collaboration by a factor of 2.8 relative to the

mean of other percentiles to a (residual) collaboration median of 951, conditional on cluster size controls.

This suggests that, for region pairs with similar cluster size, being colocated is associated with almost three

times more collaborations at the median.

Figure 2: Collaboration and distance
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Notes: Figure depicts a residualized binned scatter plot of the conditional ex-
pectation function in Equation 2. Means are added back to residuals before
plotting. Within-economic area collaborations as well as Honolulu, HI, and
Anchorage, AK, economic areas are excluded. Sources: GHTorrent, own cal-
culations.

Gravity regression results in Table 1 based on Equation 3 confirm and quantify this pattern more formally.

Estimates of the colocation effect are remarkably stable across all specifications. The effect size for coloca-

tion is large and statistically highly significant, suggesting colocated users collaborate on average about 8.8

to 9.7 times as much as users that are not colocated, holding economic-area characteristics constant. Further,

there is only a very weak, statistically significant negative relation with distance. Depending on the spec-

ification and given equal economic-area characteristics, results suggest 0.1% to 0.6% fewer collaborations

9The mean centroid-based distance between economic-area centroids in the first distance percentile is 28.6km.
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when distance increases by 100km. The fixed-effects model controlling for the multiplication of origin and

destination users in column (6) is my preferred specification. The large colocation effect points to direct

collaboration with other locals as an important driver of spillover effects among software developers.

Table 1: Collaboration, colocation, and distance

Collaboration [log] (1) (2) (3) (4) (5) (6)

Colocation 2.825*** 2.354*** 2.298*** 2.371*** 2.286*** 2.329***
(0.223) (0.176) (0.177) (0.171) (0.153) (0.071)

Distance 0.024*** -0.006*** -0.006*** -0.001 -0.006*** -0.004***
(0.002) (0.001) (0.001) (0.001) (0.001) (0.001)

Users × × × ×
Users, multiplied × × × ×
GDPs × ×
Populations ×
Origin FE ×
Destination FE ×

Observations 31,329 31,329 31,329 31,329 31,329 31,329
Adj. R2 0.016 0.409 0.409 0.469 0.595 0.922

exp(β̂colocation)−1 15.87 9.53 8.96 9.71 8.83 9.26

Notes: The outcome variable is the natural logarithm of collaborations between two economic areas plus

one. Colocation indicates collaboration between users in the same economic area. Distance is scaled in 100km.

Users, GDPs, and Populations refer to the respective variables for both origin and destination. Users, multiplied,

is the multiplication of the number of users in origin and destination. Collaboration with Anchorage, AK, and

Honolulu, HI, are excluded. Robust standard errors are reported in parenthesis. *** p<0.01, ** p<0.05, *

p<0.1. Sources: GHTorrent, Bureau of Economic Analysis, own calculations.

Note that results show that agglomeration – represented by economic-area characteristics, most importantly

cluster size – play a major role for collaboration. The naı̈ve model in column (1) of Table 1 without controls

illustrates this: In line with the descriptive finding that a large part of collaborations happens within and

between large hubs, this specification overestimates both the role of colocation and distance, even suggests

a positive relation between distance and collaboration, and generally is not able to explain variation in

collaboration well. Once control variables for economic-area characteristics are subsequently added, the

results are robust and stable, while model fit increases to an adjusted R2 of around 40% with user controls

and 60% with GDP and population controls. Adding origin and destination fixed effects that capture also

unobserved economic-area characteristics and non-linearity further improves model fit to 92%.

Inventor networks I examine the size of the colocation effect in software developer collaboration via com-

parison to arguably less digital settings. Panel A of Figure 3 plots the relation between software developer

and computer-science inventor networks and differentiates between (blue) and within (green) economic-area

collaborations. Marker size represents a measure of economic-area size. There is a strong linear relationship

between the two networks. This high inter-regional network overlap implies that software developers and
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inventors exhibit a similar inter-regional collaboration pattern.10 This indicates computer science inventors

indeed are a viable comparison group for software developers.

Figure 3: Colocation effect relative to inventors
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Panel B: Binscatter

Note: Panel A shows the relationship between the number of collaborations between economic areas in the software
developer and computer-science inventor network. Marker size represents the logarithm of the multiplication of cluster
size. The blue and green line are best linear fits from weighted log-log regressions. Panel B shows residualized binned
scatter plots of the median number of collaborations and geographic distance between economic-area pairs for both
computer-science inventors (red) and software developers (blue), with the number of bins J = 15. Residuals are
normalized to the mean of bin values, excluding the first distance bin. Means are added back to residuals before
plotting. Unconnected economic areas as well as collaborations with Honolulu, HI, and Anchorage, AK, economic
areas are excluded. Sources: GHTorrent, PatStat, own calculations.

Importantly, within-economic area (i.e., colocated) collaborations, marked in green, are systematically

shifted to the right. Size-weighted linear regression lines for within (green) and between (blue) economic

area observations formally confirm this. This parallel shift implies that, while exhibiting a comparable pat-

tern otherwise, inventor collaborations are systematically more colocated than collaborations in the software

developer network. To quantify the difference in colocation effect size between the two networks, Panel B of

Figure 3 shows the relationship between collaboration and geographic distance in a binned scatter plot for

both software developers (blue) and computer-science inventors (red) after controlling for economic-area

characteristics. Residual values are normalized by the mean values of all distance bins but the first (which

represents colocation). There is a clearly visible colocation effect in both networks while increased distance

is essentially irrelevant thereafter. The colocation effect is much higher in the inventor network, shown by

the larger elevation in median collaboration in the first distance bin for inventors compared software de-

velopers. This comparison suggests the colocation effect is about 2.7 times larger in the computer-science

inventor network relative to the software developer network.

10Figure A.6 shows a similar plot for all inventors, a larger sample of around 76,000 individuals.
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Table A.6 reports results of gravity regression analyses and compares variations of the baseline model for

the software developer to the inventor network. Model (2) is the preferred (fixed-effects) specification

from Table 1, defining colocation as indicator of being in the same economic area. I run specifications for

inventors and software developers both on the full sample of observations and for connected economic-

area pairs only. The relative effect size is the ratio between estimated colocation effects from the same

specification for inventors relative to software developers. Results confirm the binscatter representation,

also pointing to a two to three times larger colocation effect for inventors, who are about 26 to 28 times

more likely to collaborate locally.

Table 2: Colocation effect for developers and inventors

Collaboration
all connected

(1) (2) (3) (4)
inventors developers inventors developers

Colocation 3.373*** 2.329*** 3.292*** 2.478***
(0.138) (0.071) (0.102) (0.081)

Distance -0.009*** -0.004*** -0.018*** -0.001***
(0.001) (0.001) (0.001) (0.001)

Users, multiplied × × × ×
Origin FE × × × ×
Destination FE × × × ×

Observations 31,329 31,329 6,662 6,662
Adj. R2 0.566 0.922 0.593 0.975

exp(β̂colocation)−1 28.18 9.26 25.90 10.91
Relative effect size 3.04 2.37

Notes: Distance is scaled in 100km. Collaboration with Anchorage, AK, and Hon-

olulu, HI, are excluded. Robust standard errors are reported in parenthesis. ***

p<0.01, ** p<0.05, * p<0.1. Sources: GHTorrent, PatStat, Bureau of Economic

Analysis, own calculations.

Intuitively, a larger colocation effect for inventors of computer science patents compared to software de-

velopers is explained by three main differences between the two groups. First, inventors’ work results in a

patent (filing) and therefore always claims novelty and, as a result, requires more creativity and innovation

in collaboration processes (Akcigit et al., 2018). And while software development is often a creative and

innovative process, as well, this is not always necessary to the degree required for a patent grant. Second,

software consists of program code and thus software development tends to be, by nature, more codified than

inventing, which increases transferability. Third, while we know by definition developer teams on GitHub

use digtal tools for collaboration, this is not neccessarily true for inventor teams. All these factors make

inventing an activity that is more intensive in face-to-face interaction and thus less susceptible to remote

collaboration in an entirely digital work setting.
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Social networks As a second benchmark, I investigate the social network. Figure 4 plots predictions

of the fractional polynomial regressions from Equation 4 and the underlying index values for the GHCI

(left) and SCI (right panel). In both networks, a large colocation effect is clearly visible in the raw data,

represented by the sharp upward shift of the (logarithmic) distribution at a distance of zero. Apart from the

colocation effect, developer connectedness is essentially independent of distance, in line with the previous

findings. In contrast, social connectedness features strong and decreasing spatial clustering as depicted by

the continued decrease over the whole distance range. Fractional polynomial regression predictions show

the colocation effect as discontinuity at a distance of zero. Comparing predicted index values at a distance of

zero to the smallest non-zero distance as in Equation 5 yields a 11.2-fold increase in relative connectedness

probability for developer connectedness. This is larger but comparable to the colocation effect estimated

in the gravity model, which includes more controls. For the social connectedness, the colocation effect is

41.4 and thus 3.7 times larger than for developer connectedness. Given the continued strong spacial decay

in social connectedness and not for developer connectedness, this represents a conservative estimate.

Figure 4: Relative collaboration probability and distance
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Note: Panels show fractional polynomial predictions (lines) and values (markers) of scaled GHCI (blue) and SCI (red) between
connected economic-area pairs. Scaled SCI from Bailey et al. (2018) is mean-aggregated from county-county level weighted by
multiplied populations of each county-pair and rescaled between 1 and 1,000,000,000. Sources: GHTorrent, Bailey et al. (2018),
U.S. Census Bureau, own calculations.

Hence, compared to the professional networks of (digital) knowledge work by developers or inventors, social

connectedness is much more strongly related to geography. Appropriate digital tools are the precondition

for remote collaboration and, as a result, enable the difference in observed spatial collaboration patterns

between the social and professional networks. In particular, not only is the colocation effect in the social

network larger, there is also a strong and continued spatial decay in connectedness for social networks that

is not present in knowledge worker networks. Overall, the comparisons to the inventor and social network

show that even though the colocation effect in knowledge work is large, it is significantly smaller than in

less digital networks.
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4.2 Heterogeneity

Collaboration is potentially colocated to a different extent depending on the type of user and/or project. I

use the rich data on user activity and affiliation to separately estimate the colocation effect from Equation

3 by organizational affiliation, quality, user and project types, as well as collaboration intensity. Table 3

reports the estimated colocation effects along those dimensions, comparing networks for below- and above-

threshold collaborations.

Organizations Large organizations might facilitate remote collaboration (Giroud et al., 2022). I draw

on user-indicated affiliation in the data (Panel A).11 The colocation effect for users with affiliation is 5.67,

meaning that users with affiliation are 39% less colocated compared to the full sample. In a naive compari-

son of the colocation effect into intra- and inter-organizational collaboration, links within organizations are

41% more colocated. However, many firms are small and thus have little scope to facilitate remote collab-

oration.12 Therefore, the appropriate comparison is inter- and intra-organizational links of users affiliated

with large firms, defined as having more than 200 affiliated users. For large firms, the colocation effect is

generally significant but smaller. Specifically, the colocation effect for within-large firms collaborations is

0.59 and 0.78 for between-firm collaborations where at least one user is affiliated with a large firm. This

implies a 15% smaller colocation effect for intra-organizational collaboration in this group. Similarly, look-

ing at only users affiliated with one of the big tech firms (Amazon, Google, Apple, Microsoft, or Facebook)

yields within-firm collaborations 35% less colocated compared to between-firm links with involvement of

a big tech firm user. Interestingly, not all multi-establishment firms seem to facilitate remote collaboration.

Defining multi-establishment organizations as firms with users in more than five different economic areas

yields no differences in the estimated colocation effect. Overall, these findings provide direct evidence that

in particular the largest organizations facilitate remote collaboration.

Quality Colocated and non-colocated collaboration potentially systematically differs in quality. On GitHub,

there are multiple quality indicators. First, users can be followed by other users so that they receive updates

on their latest work on the platform. The results shown in Panel B suggest the colocation effect is 28%

smaller for high-quality links with above-median followers. A second measure of quality on GitHub are

forks. Users can fork projects on the platform, i.e., copy the current version into another repository. This is

typically done when the original project is useful in other projects and, therefore, indicates user interest and

usefulness. Alos with forks as quality measure, high-quality collaborations are less colocated, specifically

by 19%. As a third quality measure on the platform, I use stars. Users can award stars to repositories on

GitHub to bookmark them for future reference. Hence, stars on a project are an indication of interest in the

project. Collaborations in starred projects feature a significantly smaller colocation effect and with a 59%

11Around 30% of users provide their affiliation to an organization.
12The organization size distribution is plotted in Figure ?? in the Appendix.
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Table 3: Colocation effect heterogeneity

Dimension colocation relative relative to
effect effect baseline

Panel A: Organizations
intra-organization 5.26 1.41 0.57
inter-organization 3.73 0.40

within big-tech firm 0.13 0.65 0.01
big-tech firm involved 0.20 0.02

within multi-establishment firm 3.48 0.99 0.38
multi-establishment firm involved 3.51 0.38

within large firm 0.59 0.76 0.06
large firm involved 0.78 0.08

Panel B: Quality
above-median followers 6.64 0.72 0.72
below-median followers 9.16 0.99

above-median forks 8.97 0.81 0.97
below-median forks 11.07 1.20

with stars 6.49 0.41 0.70
no stars 15.80 1.71

Panel C: User type
above-median user experience 6.00 0.62 0.65
below-median user experience 9.75 1.05

above-median experience differential 4.36 0.39 0.47
below-median experience differential 11.08 1.20

common programming language 8.02 0.99 0.87
no common programming language 8.13 0.88

Panel D: Collaboration intensity
strong tie, via project 11.23 1.57 1.21
weak tie, via project 7.16 0.77

above-median project commits 13.00 4.36 1.40
below-median project commits 2.98 0.32

strong tie, via commits 13.05 2.54 1.41
weak tie, via commits 5.12 0.55

Panel E: Project type
above-median users 6.13 0.33 0.66
below-median users 18.47 1.99

above-median commits 8.64 0.69 0.93
below-median commits 12.47 1.35

above-median project age 6.38 0.38 0.69
below-median project age 16.99 1.83

Notes: Table shows coefficient estimates of the colocation effect in Equation 3 for above- and below-threshold

collaboration networks with respect to different characteristics. The relative effect indicates the ratio between the

colocation effect in above- and below-threshold networks. The relative-to-baseline effect is the relation to the colo-

cation effect from the preferred model of 9.26. More detailed information on each model is provided in separate

tables in the Appendix. Sources: GHTorrent, Bureau of Economic Analysis, own calculations.
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smaller colocation effect, this effect is even larger using this measure. Since most projects do not receive

any stars this measure is a relatively strong sign of quality.

User type Another dimension along which the colocation effect might differ is user characteristics (Panel

C). Results show that the colocation effect for experienced users, i.e., users with above-median tenure on

the platform, is 38% smaller. This is in line with learning effects for remote collaboration or higher face-

to-face requirements for inexperienced developers. Interestingly, collaboration between experienced and

inexperienced users is 61% more distributed than collaboration between equally experienced users, maybe

because inexperienced users are more willing to incur remote collaboration costs for learning opportunities

(Akcigit et al., 2018). Lastly, there is no significant difference in the colocation effect among users with the

same main programming language and users with different main programming language.

Collaboration intensity Panel D reports differences in the colocation effect for different measures of

strong and weak ties. Strong ties feature a 57% larger colocation effect compared to weak ties, defined

as links between users collaborating on only one joint project. Likewise, collaborations in projects with

above-median number of commits compared to the average number of commits in joint projects colocate

4.4 times more than collaborations in projects with below-median commits. Defining a weak tie as user

pairs where at least one user commits less than two times in all joint projects yields similar results, with

2.5 times higher colocation effect for strong ties. These results suggest that local collaborations typically

are much more intense than non-colocated collaborations. Remote collaboration is more sporadic, pointing

towards occasional contributions to other (open-source) projects than to core project team membership.

Project type I assess heterogeneity by project type by estimating the colocation effect in networks for

large and small projects in terms of users, commits, and project duration. Results in Panel E show that the

colocation effect in projects with below-median team size is 77% smaller. When measured through commits,

the colocation effect for below-median size teams is 31% smaller. Similarly, longer-running projects exhibit

a 72% smaller colocation effect compared to projects with above-median project age. These results suggest

that large and long-running projects are more spatially distributed while small and shorter-running projects

are more likely to be colocated.

5 Conclusion

I document spatial collaboration patterns of software developers in the United States to study the relevance of

geographic distance in a digital work setting. Conditional on economic area characteristics, colocated users

collaborate about nine times as much as non-colocated users. However, apart from the colocation effect I

find strong evidence of further increased distance being only of limited relevance for software developer

collaboration. Importantly, the size of the colocation effect is relatively small compared to less digital
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networks; both social networks and computer science inventor networks exhibit colocation effects more

than twice as large. The colocation effect is particularly small within large organizations, for high-quality

projects, sporadic interactions and experienced users. These findings suggest the relevance of geographic

distance for collaboration is indeed subdued in digital knowledge work, which counteracts otherwise strong

agglomeration effects.

The broad scope and descriptive nature characterizing the contribution of this analysis have limitations. Al-

though controlling for a multitude of observed and unobserved factors, it ultimately remains unclear to what

extent the colocation effect is causally reduced by digitization. Further, the cross-sectional analysis implies a

partial equilibrium framework as it takes the observed spatial distribution of developers as given. While un-

raveling ample suggestive evidence on the mechanism and drivers of the colocation effect, no causal claims

can be made. Additionally, data limitations constrain this analysis. More granular definitions of colocation

are infeasible, although heterogeneity analyses with respect to shared affiliation point to colocation effects

operating at a finer scale and through face-to-face interaction. More direct measurement of face-to-face

interaction and a higher spatial resolution would further enhance our understanding of the drivers behind

the colocation effect. In addition, especially as organizations seem to be important, it would be desirable to

study activity in private repositories, which are not available to date. Moreover, additional information on

user characteristics could help to disentangle individual selection effects from aggregate heterogeneity.

These findings have important implications, notably for the governance and spatial organization of knowl-

edge worker teams in the information technology sector. Importantly, findings suggest that colocation is

important for knowledge worker teams, but to a lesser extent compared to less digital settings. However,

heterogeneity in colocation prevalence indicates that remote collaboration is feasible to a different degree

for certain types of collaboration and in different environments. Results point to a crucial role of large

organizations in facilitating remote collaboration, and that high-quality projects are often associated with

spatially distributed teams. Conversely, data suggests that colocation is more important for intensive collab-

oration while non-colocated collaboration is typically sporadic. For inexperienced workers colocation with

their team seems to be essential. These findings have wider implications for policy making, in particular

that ICT could play a significant role in attenuating the strong agglomeration forces in high-skilled labor

markets. Not only management but also innovation policy makers should consider that different types of

collaboration require different degrees of colocation.
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A Appendix

A.1 Supplementary information

Representativeness. I validate the plausibility and representativeness of the sample in two ways. First,

I compare the observed regional concentration pattern with other regional data. For this, I rely on types

of data associated with the regional concentration of knowledge workers and their activity footprint across

U.S. economic areas: GDP, inventors, establishments, employees, and employee payroll. Where available,

I use these metrics both for professional, scientific, and technical services and for computer science. I find

a precise and strong positive association for all benchmarks.13 Relating GitHub users to these measures in

simple user-weighted log-log regressions explains 77.5 to 90.1% of regional variation and yields an average

slope coefficient of 0.99 ranging from 0.74 to 1.20, all highly significant. Relationships are plotted in Figure

A.1. These tight and linear relationships centering around one-to-one are reassuring and mitigate potential

concerns regarding regional bias in the sample.

Second, I compare the number of connections between users in the software developer network to connec-

tions between inventors of collaborative patents in PatStat. Although inventors are presumably more focused

on creative, novel, and innovative activities resulting in a patent and only represent a subset of the broader

community of software developers active on GitHub, one would expect to see at least some overlap of the

two networks; the fact that regional concentration of inventors and software developers is highly correlated

supports this presumption (see Figure A.1). Figure A.2 shows the correlation between inter-regional collab-

orations of in-sample users and inventors, with all inventors in Panel A and inventors of computer science

patents in Panel B. Similar to the definition of a link in the software developer network, I define inventors as

linked if they patented jointly at least once.14 Naturally, there are much less inventors than developers and

thus many economic-area pairs feature zero or few inventor links. Despite the differences, there is a strong

positive and statistically significant relationship between inter-regional collaboration in the networks which

provides additional reassurance of the samples’ representativeness also on the (regional) network level.

Connectedness indices. GHCI and SCI indices are calculated using Equation 1. SCI data on the county-

county level is taken from Bailey et al. (2018)15 and aggregated to economic-area level using the methodol-

ogy suggested in Bailey et al. (2021):

SCIi, j = ∑
ri∈R(i)

∑
r j∈R( j)

PopShareri
∗PopSharer j

∗SCIri,r j (6)

where SCIri,r j is the SCI between sub-regions i and j, sub-regions within region i are indexed ri ∈ R(i), and

sub-regional population share in region i is denoted by PopShareri
. For SCI, I aggregate the county-county

13For detailed information on supplementary data used here see the Appendix.
14For detailed information on supplementary data used here see the Appendix.
15Data is retrieved online via data.humdata.org/dataset/social-connectedness-index.
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data to the economic-area pair level by using population shares derived from U.S. Census Bureau county-

level population data as weights, since Facebook user counts are not available. After aggregation I rescale

the index. To (re)scale GHCI and SCI indices I apply

I → I−min(I)
max(I)−min(I)

∗ [Smax −Smin]+Smin (7)

where I is the index value and minimum (maximum) scale values are denoted by Smin and Smax set at 1 and

1,000,000,000, respectively.

Index aggregation. Here I reproduce the derivation of Equation 6 used to aggregate the index to economic-

area level from Bailey et al. (2021):

SCIi, j =
linksi, j

popi ∗pop j

=
∑ri∈R(i) ∑r j∈R( j) linksri,r j

∑ri∈R(i) popri
∗∑r j∈R( j) popr j

= ∑
ri∈R(i)

∑
r j∈R( j)

popri

∑ri∈R(i) popri

popr j

∑r j∈R(i) popr j

linksri,r j

popri
∗popr j

= ∑
ri∈R(i)

∑
r j∈R( j)

PopShareri
∗PopSharer j

∗SCIri,r j (8)

where SCIri,r j is the SCI between sub-regions i and j, links between two sub-regions are denoted by linksri,r j ,

sub-regions within region i are indexed ri ∈ R(i), sub-regional population is denoted by popri
, and sub-

regional population share in region i is denoted by PopShareri
.

Supplementary data. Analyses of GHTorrent data is enriched with supplementary data both on the eco-

nomic area- (i.e., regional) and the economic area pair- (i.e., network) level. At the economic area-level, I

use data from the Bureau of Economic Analyses, U.S. Census Bureau, Moretti (2021), and County Business

Patterns. From the Bureau of Economic Analyses I aggregate yearly county-level data on GDP in “Pro-

fessional, Scientific, and Technical Services” (NAICS Rev. 2 code 54, “tech GDP”) to the economic-area

level using the crosswalk between counties and economic areas from Moretti (2021)16 and take averages

for the years 2014 to 2020.17 From the U.S. Census Bureau I use county-level population estimates and

apply the same aggregation procedure.18 From the online replication package of Moretti (2021), I use the

number of computer science inventors in each economic area in 2007. From County Business Patterns, I use

county-level data on the number of workers and establishments as well as payroll for both the “Professional,

Scientific, and Technical Services” (NAICS Rev. 2 code 54, “tech”) and the “Computer Systems Design and

16Retrieved at https://www.openicpsr.org/openicpsr/project/140581/version/V1/view;jsessionid=
2BBE031DF440387A3F4EA8416E38D449.

17Retrieved at https://www.bea.gov/data/gdp/gdp-county-metro-and-other-areas.
18Retrieved at https://www.census.gov/data/datasets/time-series/demo/popest/2010s-counties-total.html.
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Related Services” (NAICS Rev. 2 code 5415, “computer science”) industry. Here, as well, I aggregate this

data to the economic area-level using the procedure described above.

At the economic area pair-level, besides the Facebook SCI data discussed above, I merge data on inventors

of patents with an application filed from 2015 until 2021 from PatStat. Here I first geolocate inventors

using the fifth version of the inventor location file in the “Geocoding of Worldwide Patent Data” by Seliger

et al. (2019).19 Inventor latitude and longitude are assigned to economic areas using the economic area

shape file by the Bureau of Transportation Statistics.20 Using the location information, I select inventors

of collaborative patents located in the U.S. (i.e., patents with at least two inventors). For analysis, I use

data on both all inventors and inventors of computer science patents, defined as either having NACE Rev.

2 codes 62 (“Computer Programming, Consultancy and Related Activities”) or 63 (“Information Service

Activities”), or IPC code H04 (“Electric Communication Technique”). There are around 76,000 inventors

with a location in the U.S. that filed a collaborative patent in this time period, of which about 17,000 filed a

computer science patent.

A.2 Robustness

Colocation There is no universal method to conceptualize colocation, but literature suggests that com-

mutable geographic distances are often economically meaningful for economic applications and colocation

effects are even stronger at the microgeographic level. Here I opt for economic areas for two reasons. First,

they represent commutable economic markets surrounding cities. Second, users often indicate their location

as a city’s “metropolitan area” or “area”, so that there typically is not more precision in their exact loca-

tion available. However, since economic areas are of different geographic size, a potential concern is that

small neighboring economic areas might be commutable and therefore should be included in the definition

of colocation. Therefore, I run Model (6) from Table 1 with alternative definitions of colocation. The re-

sults are shown in Table A.2. Including centroid-based distances of less than 100km captures only seven

economic-area pairs but leads to a substantially smaller colocation effect of 7.73. Allowing distances up to

200km includes 207 economic-area pairs and causes a sharp drop in the estimated colocation effect to 1.38.

This confirms that the colocation effect is indeed confined to small geographic distances and decays rapidly

after 100km.

Functional form In the main specification, I impose a (linear) functional form assumption on the distance

effect. A potential concern here is that the relationship between collaboration and distance exhibits a dif-

ferent, possibly non-linear, pattern. To check for this possibility I increase model flexibility by specifying

distance in a non-parametric way, i.e., using indicator variables for different distance bins. Figure A.4 plots

the resulting coefficient estimates of these distance bin indicators. The coefficient for distances greater than

3200km is omitted as reference. Also here, the colocation effect clearly stands out, measured by the coef-

19Retrieved at https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/OTTBDX.
20Retrieved at https://maps.princeton.edu/catalog/harvard-ntadbea.
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ficient on the first indicator for distances equal to zero. The other distance bins are of little importance in

comparison. The bin for distances between zero and 100km is estimated less precisely than others and is

not significantly different from zero. Except for the last estimate, the coefficient estimates tend to gradually

become smaller for higher distances. This shows that the colocation effect is confined to small distances

only and essentially vanishes thereafter, confirming findings from Panel B in Figure 2. The results thus

provide further support of the colocation definition and, given the generally monotonous behavior with in-

creasing distance, justify a simple parametric distance specification. Other parametric models that allow for

non-linear distance effects by adding a squared distance term do not improve model fit or impact the main

effect significantly (Table A.3).

Individual-level models Alternative model specifications are individual-level probability models, which I

avoid as main specification for two reasons. First, at the individual level, the largest part of a developers’

network is unobserved in the data while at the economic-area pair level, the representativeness is given and

validated. Second, data becomes extremely large and sparse as the adjacency matrix features less than 0.5%

non-zero values, a known characteristic of social networks. Nevertheless, I run several probability models

for a specification with non-parametric distance. To be computationally efficient I draw a random sample of

about 20,000 users which yields a model with about 5.6% of collaborating users and 33 million observations.

All three types of models (Linear Probability, Poisson Pseudo-maximum Likelihood, and Probit) presented

in Table A.4 exhibit a similar pattern with respect to distance as the preferred specification (see Figure A.5).

Time zones Omitted variables related to distance and collaboration are potential concerns when assessing

effects of geography. In particular, reductions of collaboration could be caused by differences in time zones,

i.e., business hour overlap (Chauvin et al., 2024). Repository-based software development generally allows

for a high degree of asynchronous collaboration. As a result, time zone differences might be less important.

Nevertheless, Table A.5 reports regression results from specificaitons including time zone controls. Reas-

suringly, the effect size remains virtually unchanged across all specifications. Still, time zones significantly

affect collaboration. Results from model one suggests about 8.2% higher collaboration within time zones.

Using time zone differences, I estimate a reduction in collaboration by 2.3% for each hour of time differ-

ence. These findings are generally in line with Chauvin et al. (2024) who estimate an overall reduction in

communication of 9.4%, but find no significant effect on asynchronous communication.

Relatedness. It is important to assess the degree to which the discussed heterogeneity dimensions are inter-

related in the network. A high degree of collinearity among variables that are used to tease out heterogeneous

effects would lead to inability of the econometric model to distinguish the drivers of heterogeneity in the

colocation effect size. I assess the relatedness of link characteristics by computing the bivariate correlation

matrix of the metrics used to construct the networks for the above heterogeneity analyses. The matrix is

shown as a heat map in Figure A.8. In general, the variables are not correlated to a worrying degree. In

fact – apart from obviously related alternative measures for the same underlying concept like stars and forks
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for quality or large firm and big tech firm – variables are only very weakly correlated with each other. This

mitigates potential concerns regarding collinearity issues in the heterogeneity analyses.
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A.3 Tables

Table A.1: Summary statistics

Statistic Mean Median Min Max N

Users
Projects per user 28.51 14 1 46,508 190,637
Links per user 123.65 7 1 14,739 190,637
Commits per user 510.42 156 1 388,287 190,637
Commits per user-project 18.40 3 1 364,397 5,286,886

Projects
Commits per project 22.64 3 1 364,397 4,298,045

per personal project 13.97 3 1 364,397 3,867,611
per team project 100.52 18 2 209,214 430,435

Users per team project 3.64 2 2 147,236 430,435

Economic areas
Users per economic area 1,895 302 2 53,818 179
Projects per economic area 26,924 3,328 4 831,728 179
Links per economic area 130,562 15,329 1 5,175,727 179
Links per economic-area pair 930 23 1 1,550,463 25,135
Commits per economic area 543,600 69,185 19 19,165,952 179

Notes: All statistics refer to the final sample of 190,637 active, collaborating users geolocated in

the United States and retrieved from ten data snapshots dated between 09/2015 and 03/2021. Means

are rounded to two decimal places for user and project statistics and to integers for economic-area

statistics. Team projects are projects with more than one contributing user in the observation period

and personal projects are projects with only one contributing user in the observation period. Commits

per user-project is the number of commits to each project by each contributing user. Links refers to

connections between users as defined by contributing to at least one joint project in the observation

period. Links per economic-area pair excludes 6,906 (= 2179 −25,135) unconnected economic-area

pairs. Sources: GHTorrent, Bureau of Economic Analysis, own calculations.
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Table A.2: Sensitivity to colocation definition

Collaboration [log]
distance cutoff

(1) (2) (3)
= 0 km < 100 km < 200 km

Colocation 2.329*** 2.166*** 0.866***
(0.071) (0.079) (0.050)

Distance -0.004*** -0.004*** -0.004***
(0.001) (0.001) (0.001)

Users, multiplied × × ×
Origin FE × × ×
Destination FE × × ×

Observations 31,329 31,329 31,329
Adj. R2 0.922 0.922 0.919

exp(β̂colocation)−1 9.26 7.73 1.38

Notes: Model (1) is the preferred (fixed-effects) specification from Ta-

ble 1, defining colocation as indicator of being in the same economic

area. Models (2) and (3) extend this definition of colocation to include

centroid-based distances of 100km and 200km, respectively. The out-

come variable is the natural logarithm of collaborations between two

economic areas plus one. Colocation indicates collaboration between

users in the same economic area. Distance is scaled in 100km. Users,

multiplied, is the multiplication of the number of users in origin and des-

tination. Collaboration with Anchorage, AK, and Honolulu, HI, are ex-

cluded. Robust standard errors are reported in parenthesis. *** p<0.01,

** p<0.05, * p<0.1. Sources: GHTorrent, Bureau of Economic Anal-

ysis, own calculations.
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Table A.3: Sensitivity to model flexibility

Collaboration log IHS

(1) (2) (3) (4) (5) (6) (7) (8)

Colocation 2.219*** 2.266*** 2.350*** 2.204*** 2.401*** 2.463*** 2.527*** 2.388***
(0.072) (0.079) (0.071) (0.076) (0.081) (0.086) (0.081) (0.085)

Distance -0.021*** -0.003*** -0.004*** -0.018*** -0.021*** -0.004*** -0.004*** -0.019***
(0.002) (0.001) (0.001) (0.002) (0.002) (0.001) (0.001) (0.002)

Distance squared 0.000*** 0.000*** 0.000*** 0.000***
(0.000) (0.000) (0.000) (0.000)

Users, multiplied × × × × × × × ×
Users, multiplied (squared) × × × ×

GDPs, multiplied × × × ×
GDPs, multiplied (squared) × ×

Populations, multiplied × × × ×
Populations, multiplied (squared) × ×

Origin FE × × × × × × × ×
Destination FE × × × × × × × ×

Observations 31,329 31,329 31,329 31,329 31,329 31,329 31,329 31,329
Adj. R2 0.923 0.925 0.923 0.928 0.924 0.925 0.924 0.927

exp(β̂colocation)−1 8.92 9.52 10.39 8.74 10.04 10.74 11.52 9.90

Notes: Table shows model variations allowing for increased model flexibility relative to the preferred specification in Table 1 by including: more economic-area

pair characteristics and squared terms thereof as well as squared distance. Models (1) to (4) feature the natural logarithm of collaborations between two economic

areas plus one and Models (5) to (8) show the same specifications with the inverse hyperbolic sine-transformed number of links as outcomes. Colocation indicates

collaboration between users in the same economic area. Distance is scaled in 100km. Multiplied refers to the multiplication of the respective metric in origin and

destination. Multiplied (squared) refers to the squared multiplication of the respective metric in origin and destination. Collaboration with Anchorage, AK, and

Honolulu, HI, are excluded. Robust standard errors are reported in parenthesis. *** p<0.01, ** p<0.05, * p<0.1. Sources: GHTorrent, Bureau of Economic

Analysis, own calculations.
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Table A.4: Individual-level probability models

Collaboration (1) (2) (3)
LPM PPML Probit

< 100 km 0.00139*** 0.226*** 0.080***
(0.00006) (0.010) (0.003)

100 – 400 km 0.00019*** 0.036*** 0.013***
(0.00007) (0.012) (0.004)

400 – 1200 km -0.00005 -0.008 -0.003
(0.00004) (0.007) (0.003)

1200 – 2400 km -0.00009* -0.019** -0.006**
(0.00005) (0.009) (0.003)

2400 – 3200 km -0.00011** -0.020** -0.007**
(0.00005) (0.009) (0.003)

Origin FE × × ×
Destination FE × × ×

Observations 33,183,717 33,179,297 33,179,297
Users (random sample) 10,726 10,726 10,726
Sample share 0.056 0.056 0.056
(Pseudo) Adj. R2 0.0003 0.0046 0.0046

Notes: Model (1) is the preferred (fixed-effects) specification from Table 1,

defining colocation as indicator of being in the same economic area. Models

(2) and (3) extend this definition of colocation to include centroid-based dis-

tances of 100km and 200km, respectively. The outcome variable is the natural

logarithm of collaborations between two economic areas plus one. Colocation

indicates collaboration between users in the same economic area. Distance

is scaled in 100km. Users, multiplied, is the multiplication of the number of

users in origin and destination. Collaboration with Anchorage, AK, and Hon-

olulu, HI, are excluded. Robust standard errors are reported in parenthesis.

*** p<0.01, ** p<0.05, * p<0.1. Sources: GHTorrent, Bureau of Economic

Analysis, own calculations.
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Table A.5: Collaboration and time zones

Collaboration [log] (1) (2) (3) (4)

Colocation 2.329*** 2.306*** 2.332*** 2.329***
(0.071) (0.071) (0.071) (0.071)

Distance -0.004*** -0.001** -0.002** -0.001
(0.001) (0.001) (0.001) (0.001)

Same timezone 0.082***
(0.010)

Timezone difference -0.023**
(0.010)

Timezone difference (IHS) -0.068***
(0.012)

Origin FE × × × ×
Destination FE × × × ×

Observations 31,329 31,329 31,329 31,329
Adj. R2 0.922 0.923 0.923 0.923

exp(β̂colocation)−1 9.26 9.03 9.30 9.26

Notes: Distance is scaled in 100km. Users, multiplied, is the multiplication of the number

of users in origin and destination. Collaboration with Anchorage, AK, and Honolulu, HI,

are excluded. Robust standard errors are reported in parenthesis. *** p<0.01, ** p<0.05,

* p<0.1. Sources: GHTorrent, Bureau of Economic Analysis, own calculations.
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Table A.6: Colocation effect for developers and inventors

Collaboration

log IHS

all connected all connected

(1) (2) (3) (4) (5) (6) (7) (8)
inventors developers inventors developers inventors developers inventors developers

Colocation 3.373*** 2.329*** 3.292*** 2.478*** 3.821*** 2.511*** 3.605*** 2.571***
(0.138) (0.071) (0.102) (0.081) (0.143) (0.080) (0.099) (0.089)

Distance -0.009*** -0.004*** -0.018*** -0.001** -0.011*** -0.004*** -0.020*** -0.001***
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.002) (0.001)

Users, multiplied × × × × × × × ×
Origin FE × × × × × × × ×
Destination FE × × × × × × × ×

Observations 31,329 31,329 6,662 6,662 31,329 31,329 6,662 6,662
Adj. R2 0.566 0.922 0.593 0.975 0.563 0.924 0.585 0.975

exp(β̂colocation)−1 28.18 9.26 25.90 10.91 44.67 11.32 35.78 12.08
Relative effect size 3.04 2.37 3.95 2.96

Notes: Table compares variations of the baseline model for the software developer to the inventor network. Model (2) is the preferred (fixed-effects)

specification from Table 1, defining colocation as indicator of being in the same economic area. Models (1) to (4) use the logarithmic number of links

as outcome, Models (5) to (8) feature the inverse hyperbolic sine-transformed number of links. Within these two groups, specifications are shown

for inventors and software developers both on the full sample of observations and for connected economic-area pairs. The relative effect size is the

ratio between estimated colocation effects from the same specification for inventors relative to software developers. Distance is scaled in 100km.

Collaboration with Anchorage, AK, and Honolulu, HI, are excluded. Robust standard errors are reported in parenthesis. *** p<0.01, ** p<0.05, *

p<0.1. Sources: GHTorrent, PatStat, Bureau of Economic Analysis, own calculations.
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Table A.7: Colocation and organizations

Collaboration

baseline link type organization type

big tech multi-est. large

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
all with info intra-org. inter-org. within involved within involved within involved

Colocation 2.329*** 1.898*** 1.834*** 1.554*** 0.122** 0.184*** 1.500*** 1.506*** 0.463*** 0.577***
(0.071) (0.090) (0.126) (0.082) (0.054) (0.065) (0.125) (0.090) (0.092) (0.084)

Distance -0.004*** -0.002*** -0.001*** -0.002*** 0.000 0.001 -0.001*** -0.002*** -0.000 -0.000
(0.001) (0.001) (0.000) (0.001) (0.000) (0.000) (0.000) (0.001) (0.000) (0.001)

Users, multiplied × × × × × × × × × ×
Origin FE × × × × × × × × × ×
Destination FE × × × × × × × × × ×

Observations 31,329 31,329 31,329 31,329 31,329 31,329 31,329 31,329 31,329 31,329
Adj. R2 0.922 0.764 0.572 0.761 0.573 0.686 0.562 0.759 0.540 0.691

exp(β̂colocation)−1 9.26 5.67 5.26 3.73 0.13 0.20 3.48 3.51 0.59 0.78
Relative effect size 0.61 0.71 1.53 1.01 1.32

Notes: Model (1) is the preferred (fixed-effects) specification from Table 1, defining colocation as indicator of being in the same economic area. Model (2) restricts Model (1)

to links where both users provide an affiliation. Models (3) and (4) contrast the colocation effect for intra- and inter-organizational links. Model (5) estimates the colocation

effect for links within the big tech firms Google, Amazon, Microsoft, Facebook, and Apple. Model (6) estimates the colocation effect for multi-establishment organizations

defined as organizations with affiliated users in at least 5 different economic areas, and Model (7) for organizations with at least 200 affiliated users. Distance is scaled in

100km. Collaboration with Anchorage, AK, and Honolulu, HI, are excluded. Robust standard errors are reported in parenthesis. *** p<0.01, ** p<0.05, * p<0.1. Sources:

GHTorrent, Bureau of Economic Analysis, own calculations.
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Table A.8: Colocation and collaboration quality

Collaboration
followers forks stars

(1) (2) (3) (4) (5) (6) (7)
baseline ≥ median < median ≥ median < median ≥ 1 = 0

Colocation 2.329*** 2.033*** 2.318*** 2.299*** 2.491*** 2.013*** 2.821***
(0.071) (0.081) (0.078) (0.072) (0.121) (0.074) (0.109)

Distance -0.004*** -0.003*** -0.003*** -0.003*** -0.003*** -0.003*** -0.003***
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Users, multiplied × × × × × × ×
Origin FE × × × × × × ×
Destination FE × × × × × × ×

Observations 31,329 31,329 31,329 31,329 31,329 31,329 31,329
Adj. R2 0.922 0.805 0.828 0.855 0.664 0.850 0.741

exp(β̂colocation)−1 9.26 6.64 9.16 8.97 11.07 6.49 15.80
Relative effect size – 1.38 1.23 2.43

Median – 8 5 0

Notes: Model (1) is the preferred (fixed-effects) specification from Table 1, defining colocation as indicator of being in the same

economic area. Models (2) to (7) estimate Model (1) on the number of links that are below (above) certain threshold values of various

collaboration quality metrics. E.g., Model (2) estimates the colocation effect for links where the average number of followers of the

two users is above the median number of (average) followers in all users-pairs of 8. Models (4) and (5) refer to links in projects with

above- or below-median number of forks. Models (6) and (7) refer to links in projects with and without stars. Distance is scaled

in 100km. Collaboration with Anchorage, AK, and Honolulu, HI, are excluded. Robust standard errors are reported in parenthesis.

*** p<0.01, ** p<0.05, * p<0.1. Sources: GHTorrent, Bureau of Economic Analysis, own calculations.
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Table A.9: Colocation and project types

Collaboration
users commits age

(1) (2) (3) (4) (5) (6) (7)
baseline ≥ 3 < 3 ≥ median < median ≥ median < median

Colocation 2.329*** 1.964*** 2.969*** 2.266*** 2.600*** 1.999*** 2.890***
(0.071) (0.080) (0.120) (0.074) (0.116) (0.072) (0.116)

Distance -0.004*** -0.003*** -0.005*** -0.003*** -0.003*** -0.003*** -0.004***
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Users, multiplied × × × × × × ×
Origin FE × × × × × × ×
Destination FE × × × × × × ×

Observations 31,329 31,329 31,329 31,329 31,329 31,329 31,329
Adj. R2 0.922 0.854 0.679 0.853 0.702 0.850 0.717

exp(β̂colocation)−1 9.26 6.13 18.47 8.64 12.47 6.38 16.99
Relative effect size – 0.33 0.69 0.38

Median – 2 15 11

Notes: Model (1) is the preferred (fixed-effects) specification from Table 1, defining colocation as indicator of being in the same

economic area. Models (2) to (7) estimate Model (1) on the number of links that are below (above) certain threshold values of

project metrics. Models (2) and (3) estimate the colocation effect links within projects that feature more than two users and two

users, respectively. Models (4) and (5) refer to links within projects that feature above- (below-)median commits and Models (6) an

(7) to links within projects of above- (below-)median age in months. Distance is scaled in 100km. Collaboration with Anchorage,

AK, and Honolulu, HI, are excluded. Robust standard errors are reported in parenthesis. *** p<0.01, ** p<0.05, * p<0.1. Sources:

GHTorrent, Bureau of Economic Analysis, own calculations.
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Table A.10: Colocation and user types

Collaboration
experience ∆(experience) programming language

(1) (2) (3) (4) (5) (6) (7)
baseline ≥ median < median ≥ median < median same different

Colocation 2.329*** 1.946*** 2.375*** 1.679*** 2.492*** 2.200*** 2.212***
(0.071) (0.081) (0.078) (0.079) (0.078) (0.088) (0.074)

Distance -0.004*** -0.003*** -0.003*** -0.002*** -0.003*** -0.002*** -0.003***
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Users, multiplied × × × × × × ×
Origin FE × × × × × × ×
Destination FE × × × × × × ×

Observations 31,329 31,329 31,329 31,329 31,329 31,329 31,329
Adj. R2 0.922 0.793 0.836 0.807 0.836 0.782 0.842

exp(β̂colocation)−1 9.26 6.00 9.75 4.36 11.08 8.02 8.13
Relative effect size – 0.62 0.39 0.99

Median – 11.5 7 –

Notes: Model (1) is the preferred (fixed-effects) specification from Table 1, defining colocation as indicator of being in the same

economic area. Models (2) to (7) estimate Model (1) on the number of links that are below (above) median of user metrics. Models

(2) and (3) refer to links with above- (below-)median project-level user engagement measured by the average number of commits to

a project per user-pair. Models (4) and (5) refer to the average platform age of the user-pair as a measure of experience. Models (6)

and (7) refer to the differential in experience between both users in a link, also measured as user platform age. Model (8) refers to

links where both users feature the same (main) programming language, defined as the programming language most used by a user

over all her commits. Distance is scaled in 100km. Collaboration with Anchorage, AK, and Honolulu, HI, are excluded. Robust

standard errors are reported in parenthesis. *** p<0.01, ** p<0.05, * p<0.1. Sources: GHTorrent, Bureau of Economic Analysis,

own calculations.
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Table A.11: Colocation and economic-area characteristics

Collaboration
# local users avg. firm size

(1) (2) (3) (4) (5)
baseline ≥ median Top 10 ≥ median ≥ median

Colocation 2.329*** 2.478*** 2.430*** 2.498*** 2.430***
(0.071) (0.113) (0.068) (0.074) (0.069)

Distance -0.004*** -0.004*** -0.004*** -0.004*** -0.004***
(0.001) (0.001) (0.001) (0.001) (0.001)

Colocation interactions with

Large economic area -0.295**
(0.142)

Top 10 largest economic area -1.978***
(0.446)

Big tech firm intensity -1.026***
(0.183)

Big software firm intensity -1.595***
(0.386)

Observations 31,329 31,329 31,329 31,329 31,329
Adj. R2 0.922 0.923 0.923 0.923 0.923

exp(β̂colocation)−1 9.26 10.91 10.36 11.16 10.36
exp(β̂colocation + β̂interaction)−1 – 7.87 0.57 3.36 1.31

Relative effect size – 1.39 18.18 3.32 7.91

Notes: Model (1) is the preferred (fixed-effects) specification from Table 1, defining colocation as indicator of

being in the same economic area. Models (2)-(5) assess the heterogeneity of the colocation effect by including

interactions with local characteristics. Large economic area is an indicator for above-median number of users.

Top 10 largest economic area indicates the ten largest economic areas in terms of the number of users. Big tech

firm intensity is an indicator for above-median number of technology firms with more than 1,000 employees.

Likewise, big software firm intensity indicates above-median number of software firms with more than 1,000

employees. Distance is scaled in 100km. Collaboration with Anchorage, AK, and Honolulu, HI, are excluded.

Robust standard errors are reported in parenthesis. *** p<0.01, ** p<0.05, * p<0.1. Sources: GHTorrent, Bureau

of Economic Analysis, County Business Patterns, own calculations.
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Table A.12: Colocation and strong versus weak ties

Collaboration

projects commits

median minimum

(1) (2) (3) (4) (5) (6) (7)
baseline > 1 = 1 above below > 2 ≤ 2

Colocation 2.329*** 2.504*** 2.100*** 2.639*** 1.382*** 2.643*** 1.812***
(0.071) (0.105) (0.068) (0.089) (0.064) (0.104) (0.068)

Distance -0.004*** -0.004*** -0.003*** -0.003*** -0.002*** -0.003*** -0.002***
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Users, multiplied × × × × × × ×
Origin FE × × × × × × ×
Destination FE × × × × × × ×

Observations 31,329 31,329 31,329 31,329 31,329 31,329 31,329
Adj. R2 0.922 0.792 0.920 0.809 0.830 0.758 0.847

exp(β̂colocation)−1 9.26 11.23 7.16 13.00 2.98 13.05 5.12
Relative effect size – 1.57 4.36 2.54

Notes: Model (1) is the preferred (fixed-effects) specification from Table 1, defining colocation as indicator of being in the same

economic area. Model (2) features the logarithmic number of strong ties as outcome variable, i.e., the number of inter-regional

links between users with multiple joint projects. The outcome variable in Model (3) is the logarithmic number of weak ties, i.e.,

the number of inter-regional links between users with only one joint project. Models (4) and (5) contrast colocation in links with

sporadic and intense collaboration, where sporadic collaboration is indicated by links where at least one user contributes less than

two commits in all joint projects. Distance is scaled in 100km. Collaboration with Anchorage, AK, and Honolulu, HI, are excluded.

Robust standard errors are reported in parenthesis. *** p<0.01, ** p<0.05, * p<0.1. Sources: GHTorrent, Bureau of Economic

Analysis, own calculations.
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Table A.13: Colocation and collaboration intensity

Collaboration

counts ratios

(1) (2) (3) (4) (5)

baseline projects commits commits commits
per project per link

Colocation 2.329*** 3.106*** 4.505*** 1.254*** 2.029***
(0.071) (0.099) (0.156) (0.082) (0.109)

Distance -0.004*** -0.005*** -0.008*** -0.002*** -0.003***
(0.001) (0.001) (0.001) (0.001) (0.001)

Users, multiplied × × × × ×
Origin FE × × × × ×
Destination FE × × × × ×

Observations 31,329 31,329 31,329 31,329 31,329
Adj. R2 0.922 0.907 0.852 0.555 0.547

exp(β̂colocation)−1 9.26 21.32 89.43 6.60 2.51
Relative effect size – 2.30 9.66 – –

Notes: Model (1) is the preferred (fixed-effects) specification from Table 1, defining colocation as

indicator of being in the same economic area. Models (2) and (3) estimate the colocation effect in the

sum of projects, Model (2), and commits, Model (3), between economic-area pairs. Models (4) and

(5) feature collaboration intensity measures: average number of commits per project, Model (5), and

user-link, Model (6), for each economic-area pair. Distance is scaled in 100km. Collaboration with

Anchorage, AK, and Honolulu, HI, are excluded. Robust standard errors are reported in parenthesis.

*** p<0.01, ** p<0.05, * p<0.1. Sources: GHTorrent, Bureau of Economic Analysis, own calcula-

tions.
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A.4 Figures
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Figure A.1: Representativness
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Panel C: Tech workers
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Panel D: CS workers
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Panel E: Tech establishments
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Panel F: CS establishments
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Panel G: Tech worker pay
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Note: Plots show the relationship between (the share of) users per economic area and
economic-area level metrics related to software development after logarithmic transforma-
tion. Bubble size represents economic-area population size. Red lines are best linear fits
from user-weighted log-log regressions. Sources: GHTorrent, Moretti (2021), Bureau of
Economic Analysis, County Business Patterns, own calculations.
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Figure A.2: Relation between software developer and inventor collaboration network
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Note: Plots show the relationship between the number of inter-regional collaborations between economic areas in
the software developer and inventor network. Panel A compares software developer collaborations to all collabora-
tions in collaborative patents and Panel B to collaborative computer science patents. Collaborations are transformed
logarithmically. Bubble size represents the multiplication of economic-area size in terms of users after logarithmic
transformation. Red lines are best linear fits from weighted log-log regressions. Sources: GHTorrent, PatStat, Bureau
of Economic Analysis, own calculations.

Figure A.3: Distance
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Notes: Plot shows the distribution of centroid-based geodesic
distance between economic areas. The horizontal red line indi-
cates the median distance of 1,439. The blue curve represents the
Epanechnikov kernel density estimate. The right tail of the distri-
bution starting approximately at distances greater than 4,000km
is essentially driven entirely by the remote economic areas An-
chorage, AK, and Honolulu, HI. Sources: GHTorrent, Bureau of
Economic Analysis, own calculations.
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Figure A.4: Non-parametric distance
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Notes: Plot shows coefficient point estimates and confidence in-
tervals for the baseline fixed effects model specification with non-
parametric distance. The indicator for distances above 3,200 km
is omitted. Blue bars show 95% confidence intervals from robust
standard errors. Collaborations with Anchorage, AK, and Hon-
olulu, HI, are excluded. Sources: GHTorrent, own calculations.

Figure A.5: Individual-level probability models
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Panel C: Probit

Notes: Plot shows coefficient point estimates and confidence intervals for the individual-level fixed effects model
specification with non-parametric distance from Table A.4. The indicator for distances above 3,200 km is omitted.
Blue bars show 95% confidence intervals from robust standard errors. Collaborations with Anchorage, AK, and
Honolulu, HI, are excluded. Sources: GHTorrent, own calculations.
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Figure A.6: Colocation effect relative to inventors
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Note: Plots show the relationship between the number of collaborations between economic areas in the software devel-
oper and inventor network. Panel A compares software developer collaborations to all collaborations in collaborative
patents and Panel B to collaborative computer science patents. Collaborations are transformed logarithmically. Blue
bubbles depict between-economic area collaborations and green bubbles represent within-economic area collabora-
tions. Bubble size represents the multiplication of economic-area size in terms of users after logarithmic transforma-
tion. The blue and green line are best linear fits from weighted log-log regressions for within- and between-economic
area observations. Sources: GHTorrent, PatStat, own calculations.

Figure A.7: Histograms of scaled GHCI and SCI

Note: Plots show the distribution of scaled GHCI and SCI regional connectedness indices. The horizontal red lines
indicate medians of 133,753 for the GHCI and 3,518,538 for the SCI. The blue curves represent the Epanechnikov
kernel density estimates. Both indices are scaled between 1 and 1,000,000,000. Scaled SCI from Bailey et al. (2018)
is mean-aggregated from county-county level weighted by multiplied populations of each county-pair and rescaled
between 1 and 1,000,000,000. As indices are highly skewed, I restrict the y-axes to maximum values of 20,000,000
for GHCI and 600,000 for SCI to achieve meaningful visualization. Scaled GHCI values of one, representing no
links, are excluded from the histogram but not from the median. Sources: GHTorrent, Bailey et al. (2018), Bureau of
Economic Analysis, own calculations.
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Figure A.8: Relatedness of link characteristics
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Note: Plots shows bivariate correlations between link characteristics for the sample where all characteristics are non-
empty. Correlations are colored by their strength. Sources: GHTorrent, Bureau of Economic Analysis, own calcula-
tions.
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